IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i8p1691-1705.html
   My bibliography  Save this article

Frontier estimation with local polynomials and high power-transformed data

Author

Listed:
  • Girard, Séphane
  • Jacob, Pierre

Abstract

We present a new method for estimating the frontier of a sample. The estimator is based on a local polynomial regression on the power-transformed data. We assume that the exponent of the transformation goes to infinity while the bandwidth goes to zero. We give conditions on these two parameters for obtaining almost complete convergence. The asymptotic conditional bias and variance of the estimator are provided and its good performance is illustrated for some finite sample situations.

Suggested Citation

  • Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1691-1705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00016-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter & Park, Byeong U. & Stern, Steven E., 1998. "On Polynomial Estimators of Frontiers and Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 71-98, July.
    2. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    3. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    4. GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1997. "On estimation of monotone and concave frontier functions," LIDAM Discussion Papers CORE 1997031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Tsybakov, A.B. & Korostelev, A.P. & Simar, L., 1992. "Efficient Estimation of Monotone Boundaries," Papers 9209, Catholique de Louvain - Institut de statistique.
    6. Stéphane Girard & Pierre Jacob, 2003. "Extreme Values and Haar Series Estimates of Point Process Boundaries," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 369-384, June.
    7. Korostelev, A. P. & Simar, L. & Tsybakov, A. B., 1995. "Estimation of monotone boundaries," LIDAM Reprints CORE 1178, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Girard, Stéphane & Jacob, Pierre, 2008. "Frontier estimation via kernel regression on high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 403-420, March.
    9. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    10. Hardle, W. & Park, B. U. & Tsybakov, A. B., 1995. "Estimation of Non-sharp Support Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 205-218, November.
    11. Hall, Peter & Park, Byeong U., 2004. "Bandwidth choice for local polynomial estimation of smooth boundaries," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 240-261, November.
    12. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    13. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Stéphane & Jacob, Pierre, 2008. "Frontier estimation via kernel regression on high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 403-420, March.
    2. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    3. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).
    4. Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
    5. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2009. "Frontier Estimation and Extreme Values Theory," IDEI Working Papers 611, Institut d'Économie Industrielle (IDEI), Toulouse.
    6. Cheng, Ming-Yen & Hall, Peter, 2006. "Methods for tracking support boundaries with corners," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1870-1893, September.
    7. Leonie Selk & Charles Tillier & Orlando Marigliano, 2022. "Multivariate boundary regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 400-426, March.
    8. Martins-Filho, Carlos & Yao, Feng, 2007. "Nonparametric frontier estimation via local linear regression," Journal of Econometrics, Elsevier, vol. 141(1), pages 283-319, November.
    9. Biau, Gérard & Cadre, Benoît & Pelletier, Bruno, 2008. "Exact rates in density support estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2185-2207, November.
    10. Hall, Peter & Park, Byeong U., 2004. "Bandwidth choice for local polynomial estimation of smooth boundaries," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 240-261, November.
    11. Jeong, Seok-Oh & Park, Byeong U., 2004. "Limit Distribution of Convex-Hull Estimators of Boundaries," Papers 2004,39, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    12. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    13. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    14. Abdelaati Daouia & Byeong U. Park, 2013. "On Projection-type Estimators of Multivariate Isotonic Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 363-386, June.
    15. Wheelock, David C. & Wilson, Paul W., 2008. "Non-parametric, unconditional quantile estimation for efficiency analysis with an application to Federal Reserve check processing operations," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 209-225, July.
    16. Hall, Peter & Park, Byeong U. & Stern, Steven E., 1998. "On Polynomial Estimators of Frontiers and Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 71-98, July.
    17. Florens, Jean-Pierre & Simar, Leopold, 2005. "Parametric approximations of nonparametric frontiers," Journal of Econometrics, Elsevier, vol. 124(1), pages 91-116, January.
    18. Martins-Filho, Carlos & Yao, Feng, 2008. "A smooth nonparametric conditional quantile frontier estimator," Journal of Econometrics, Elsevier, vol. 143(2), pages 317-333, April.
    19. Klemelä, Jussi, 2004. "Complexity penalized support estimation," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 274-297, February.
    20. Girard, Stéphane, 2004. "On the asymptotic normality of the L1-error for Haar series estimates of Poisson point processes boundaries," Statistics & Probability Letters, Elsevier, vol. 66(1), pages 81-90, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:8:p:1691-1705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.