IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v8y1992i02p241-257_01.html
   My bibliography  Save this article

Generic Uniform Convergence

Author

Listed:
  • Andrews, Donald W.K.

Abstract

This paper presents several generic uniform convergence results that include generic uniform laws of large numbers. These results provide conditions under which pointwise convergence almost surely or in probability can be strengthened to uniform convergence. The results are useful for establishing asymptotic properties of estimators and test statistics.The results given here have the following attributes, (1) they extendresults of Newey to cover convergence almost surely as well as convergence in probability, (2) they apply to totally bounded parameter spaces (rather than just to compact parameter spaces), (3) they introduce a set of conditions for a generic uniform law of large numbers that has the attribute of giving the weakest conditions available for i.i.d. contexts, but which apply in some dependent nonidentically distributed contexts as well, and (4) they incorporate and extend themain results in the literature in a parsimonious fashion.

Suggested Citation

  • Andrews, Donald W.K., 1992. "Generic Uniform Convergence," Econometric Theory, Cambridge University Press, vol. 8(2), pages 241-257, June.
  • Handle: RePEc:cup:etheor:v:8:y:1992:i:02:p:241-257_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600012780/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:8:y:1992:i:02:p:241-257_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.