IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v53y2015icp78-89.html
   My bibliography  Save this article

Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA

Author

Listed:
  • Feng, Chenpeng
  • Chu, Feng
  • Ding, Jingjing
  • Bi, Gongbing
  • Liang, Liang

Abstract

As environment constraints on economic growth are strengthening, Carbon Emissions Abatement (CEA) allocation becomes a significant issue that draws academia׳s attention. In the literature, the Data Envelopment Analysis (DEA) technique has been applied to obtain CEA allocation with centralized models. Nevertheless, a centralized allocation plan suffers from an implementation difficulty in persuading decision-making units (DMUs) into an agreement. In this paper, we propose a new two-step method to mitigate this side effect. In the first step, we provide improved DEA-based centralized allocation models under the assumptions of constant returns-to-scale (CRS) and variable returns-to-scale (VRS) respectively and in the second step, two compensation schemes are developed for centralized allocation plans. An empirical application to the countries in Organization for Economic Co-operation and Development (OECD) is presented to elaborate the main idea.

Suggested Citation

  • Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
  • Handle: RePEc:eee:jomega:v:53:y:2015:i:c:p:78-89
    DOI: 10.1016/j.omega.2014.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048314001601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2014.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boaz Golany & Eran Tamir, 1995. "Evaluating Efficiency-Effectiveness-Equality Trade-Offs: A Data Envelopment Analysis Approach," Management Science, INFORMS, vol. 41(7), pages 1172-1184, July.
    2. Fare, Rolf & Grosskopf, Shawna & Tyteca, Daniel, 1996. "An activity analysis model of the environmental performance of firms--application to fossil-fuel-fired electric utilities," Ecological Economics, Elsevier, vol. 18(2), pages 161-175, August.
    3. Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    5. Laurens Cherchye & Bram De Rock & Bart Dierynck & Filip Roodhooft & Jeroen Sabbe, 2013. "Opening the “Black Box” of Efficiency Measurement: Input Allocation in Multioutput Settings," Operations Research, INFORMS, vol. 61(5), pages 1148-1165, October.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    8. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    9. Baumgartner, Stefan & Dyckhoff, Harald & Faber, Malte & Proops, John & Schiller, Johannes, 2001. "The concept of joint production and ecological economics," Ecological Economics, Elsevier, vol. 36(3), pages 365-372, March.
    10. Karsu, Özlem & Morton, Alec, 2014. "Incorporating balance concerns in resource allocation decisions: A bi-criteria modelling approach," Omega, Elsevier, vol. 44(C), pages 70-82.
    11. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    12. Asmild, Mette & Paradi, Joseph C. & Pastor, Jesus T., 2009. "Centralized resource allocation BCC models," Omega, Elsevier, vol. 37(1), pages 40-49, February.
    13. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    14. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    15. Bretholt, Abraham & Pan, Jeh-Nan, 2013. "Evolving the latent variable model as an environmental DEA technology," Omega, Elsevier, vol. 41(2), pages 315-325.
    16. Sebastián Lozano & Gabriel Villa, 2004. "Centralized Resource Allocation Using Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 22(1), pages 143-161, July.
    17. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    18. Hua, Zhongsheng & Bian, Yiwen & Liang, Liang, 2007. "Eco-efficiency analysis of paper mills along the Huai River: An extended DEA approach," Omega, Elsevier, vol. 35(5), pages 578-587, October.
    19. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    20. Zofio, Jose L. & Prieto, Angel M., 2001. "Environmental efficiency and regulatory standards: the case of CO2 emissions from OECD industries," Resource and Energy Economics, Elsevier, vol. 23(1), pages 63-83, January.
    21. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    22. Pekka Korhonen & Mikko Syrjänen, 2004. "Resource Allocation Based on Efficiency Analysis," Management Science, INFORMS, vol. 50(8), pages 1134-1144, August.
    23. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    24. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
    25. Fare, R. & Grosskopf, S. & Hernandez-Sancho, F., 2004. "Environmental performance: an index number approach," Resource and Energy Economics, Elsevier, vol. 26(4), pages 343-352, December.
    26. Lozano, S. & Villa, G. & Adenso-Díaz, B., 2004. "Centralised target setting for regional recycling operations using DEA," Omega, Elsevier, vol. 32(2), pages 101-110, April.
    27. Athanassopoulos, Antreas D., 1995. "Goal programming & data envelopment analysis (GoDEA) for target-based multi-level planning: Allocating central grants to the Greek local authorities," European Journal of Operational Research, Elsevier, vol. 87(3), pages 535-550, December.
    28. Antreas D. Athanassopoulos, 1998. "Decision Support for Target-Based Resource Allocation of Public Services in Multiunit and Multilevel Systems," Management Science, INFORMS, vol. 44(2), pages 173-187, February.
    29. Marvin B. Mandell, 1991. "Modelling Effectiveness-Equity Trade-Offs in Public Service Delivery Systems," Management Science, INFORMS, vol. 37(4), pages 467-482, April.
    30. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    31. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    32. Fare, R. & Grabowski, R. & Grosskopf, S. & Kraft, S., 1997. "Efficiency of a fixed but allocatable input: A non-parametric approach," Economics Letters, Elsevier, vol. 56(2), pages 187-193, October.
    33. Moreno-Ternero, Juan D., 2013. "A new analysis of a simple model of fair allocation," Economics Letters, Elsevier, vol. 118(2), pages 393-395.
    34. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    35. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    36. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    37. Daniel Tyteca, 1997. "Linear Programming Models for the Measurement of Environmental Performance of Firms—Concepts and Empirical Results," Journal of Productivity Analysis, Springer, vol. 8(2), pages 183-197, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    2. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    5. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    6. Yingying Shao & Gongbing Bi & Feng Yang & Qiong Xia, 2018. "Resource allocation for branch network system with considering heterogeneity based on DEA method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1005-1025, December.
    7. Yu, Ming-Miin & Chen, Li-Hsueh, 2016. "Centralized resource allocation with emission resistance in a two-stage production system: Evidence from a Taiwan’s container shipping company," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 650-671.
    8. Mehdi Soltanifar & Farhad Hosseinzadeh Lotfi & Hamid Sharafi & Sebastián Lozano, 2022. "Resource allocation and target setting: a CSW–DEA based approach," Annals of Operations Research, Springer, vol. 318(1), pages 557-589, November.
    9. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2021. "A review of DEA approaches applying a common set of weights: The perspective of centralized management," European Journal of Operational Research, Elsevier, vol. 294(1), pages 3-15.
    10. Lorenzo Castelli & Raffaele Pesenti & Walter Ukovich, 2010. "A classification of DEA models when the internal structure of the Decision Making Units is considered," Annals of Operations Research, Springer, vol. 173(1), pages 207-235, January.
    11. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    12. Ane Elixabete Ripoll-Zarraga & Sebastián Lozano, 2020. "A centralised DEA approach to resource reallocation in Spanish airports," Annals of Operations Research, Springer, vol. 288(2), pages 701-732, May.
    13. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    14. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    15. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    16. Arocena, Pablo & Cabasés, Fermín & Pascual, Pedro, 2022. "A centralized directional distance model for efficient and horizontally equitable grants allocation to local governments," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    17. Tsolas, Ioannis E., 2011. "Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA," Resources Policy, Elsevier, vol. 36(2), pages 159-167, June.
    18. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    19. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    20. Jie Wu & Qingyuan Zhu & Wade D Cook & Joe Zhu, 2016. "Best cooperative partner selection and input resource reallocation using DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1221-1237, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:53:y:2015:i:c:p:78-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.