IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v41y2013i2p315-325.html
   My bibliography  Save this article

Evolving the latent variable model as an environmental DEA technology

Author

Listed:
  • Bretholt, Abraham
  • Pan, Jeh-Nan

Abstract

This article tests several nonparametric DEA models for their ability to accurately decompose CO2 emissions change using a Malmquist styled decomposition framework. This production oriented activity analysis involves panel data and two data sets from the literature for comparison. A new Latent Variable radial input-oriented technology is introduced that is closely associated with a Koopmans Efficient Slacks Based Model. The Latent Variable technology simultaneously reduces inputs and undesirable outputs in a single Multiple Objective Linear Program. This production theoretic methodology is adapted to preserve both scale efficiency and causality within the envelopment framework. Finally, the application studies demonstrate the internal consistency of the Latent Variable reduction coefficients, which overturns previous results and paves the way for further research into undesirable externalities.

Suggested Citation

  • Bretholt, Abraham & Pan, Jeh-Nan, 2013. "Evolving the latent variable model as an environmental DEA technology," Omega, Elsevier, vol. 41(2), pages 315-325.
  • Handle: RePEc:eee:jomega:v:41:y:2013:i:2:p:315-325
    DOI: 10.1016/j.omega.2012.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048312000862
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gale Boyd & George Tolley & Joseph Pang, 2002. "Plant Level Productivity, Efficiency, and Environmental Performance of the Container Glass Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(1), pages 29-43, September.
    2. Juo, Jia-Ching & Fu, Tsu-Tan & Yu, Ming-Miin, 2012. "Non-oriented slack-based decompositions of profit change with an application to Taiwanese banking," Omega, Elsevier, vol. 40(5), pages 550-561.
    3. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    4. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    5. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    6. Sueyoshi, Toshiyuki, 2000. "Stochastic DEA for restructure strategy: an application to a Japanese petroleum company," Omega, Elsevier, vol. 28(4), pages 385-398, August.
    7. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2001. "Slack-adjusted DEA for time series analysis: Performance measurement of Japanese electric power generation industry in 1984-1993," European Journal of Operational Research, Elsevier, vol. 133(2), pages 232-259, January.
    9. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    10. Ramanathan, Ramakrishnan, 2005. "An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa," Energy, Elsevier, vol. 30(15), pages 2831-2842.
    11. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    12. Zofio, Jose L. & Prieto, Angel M., 2001. "Environmental efficiency and regulatory standards: the case of CO2 emissions from OECD industries," Resource and Energy Economics, Elsevier, vol. 23(1), pages 63-83, January.
    13. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    14. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    15. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    16. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    17. Fare, Rolf & Grosskopf, Shawna, 2004. "Modeling undesirable factors in efficiency evaluation: Comment," European Journal of Operational Research, Elsevier, vol. 157(1), pages 242-245, August.
    18. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    19. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    20. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    21. Kuosmanen, Timo & Kazemi Matin, Reza, 2011. "Duality of weakly disposable technology," Omega, Elsevier, vol. 39(5), pages 504-512, October.
    22. Luis R. Murillo-Zamorano, 2005. "The Role of Energy in Productivity Growth: A Controversial Issue?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 69-88.
    23. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    24. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    25. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    26. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    3. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    4. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    5. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:41:y:2013:i:2:p:315-325. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.