IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i5d10.1007_s10668-023-04295-6.html
   My bibliography  Save this article

Company efforts and environmental efficiency: evidence from European railways considering market-based emissions

Author

Listed:
  • Arsen Benga

    (American College of the Middle East)

  • Glediana Zeneli (Foto)

    (University of Tirana)

  • María Jesús Delgado‑Rodríguez

    (Universidad Rey Juan Carlos)

  • Sonia Lucas Santos

    (Universidad Autónoma de Madrid)

Abstract

Railways play a leading role in the process of decarbonizing the transport sector. Therefore, it is crucial to better understand the environmental performance of this sector and the effect of recent incentives on cutting carbon emissions. An appropriate assessment of railway Environmental Efficiency is desirable as it assists in identifying the best practices in terms of targets and input–output optimization. However, the existing literature does not consider a company’s efforts to cut emissions through their electricity purchasing choices. This paper addresses this issue by assessing the environmental efficiency of a selected set of European rail operators through a slack-based Data Envelopment Analysis, and adjusting the measures for both market-based and location-based emissions. The distortion caused by this adjustment is used for the first time as a proxy for the efforts made to purchase electricity from suppliers with a low-emissions portfolio. Additionally, a new greenhouse gas emissions efficiency measure is estimated for each considered company in order to explain the greenhouse gas emissions. Our dataset comprises 56 observations from 14 railway operators spanning 2017–2020, with inputs encompassing length of lines, total and specific energy consumption, and outputs including passenger turnover, freight turnover, total and specific market-based emissions, and total and specific location-based emissions. Results indicate considerable room for improvement, as the scores are less than half of the ideal level. The energy purchasing choices of companies fail to distort the efficiency scores, and the level of distortion over time has been decreasing. The comparison between the passenger sector and the freight sector gives a further explanation for the low performance of individual companies. To the best of our knowledge, this is the first time that market-based emissions are considered in a transport efficiency assessment model.

Suggested Citation

  • Arsen Benga & Glediana Zeneli (Foto) & María Jesús Delgado‑Rodríguez & Sonia Lucas Santos, 2025. "Company efforts and environmental efficiency: evidence from European railways considering market-based emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 9977-10012, May.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:5:d:10.1007_s10668-023-04295-6
    DOI: 10.1007/s10668-023-04295-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04295-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04295-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    3. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    4. Andrew S. J. Smith & Christopher Nash, 2014. "Rail Efficiency: Cost Research and its Implications for Policy," International Transport Forum Discussion Papers 2014/22, OECD Publishing.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA radial and non-radial models for unified efficiency under natural and managerial disposability: Theoretical extension by strong complementary slackness conditions," Energy Economics, Elsevier, vol. 34(3), pages 700-713.
    6. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    7. Young-Tae Chang, 2013. "Environmental efficiency of ports: a Data Envelopment Analysis approach," Maritime Policy & Management, Taylor & Francis Journals, vol. 40(5), pages 467-478, September.
    8. Hashem Omrani & Khatereh Shafaat & Arash Alizadeh, 2019. "Integrated data envelopment analysis and cooperative game for evaluating energy efficiency of transportation sector: a case of Iran," Annals of Operations Research, Springer, vol. 274(1), pages 471-499, March.
    9. Fei Mo & Derek Wang, 2019. "Environmental Sustainability of Road Transport in OECD Countries," Energies, MDPI, vol. 12(18), pages 1-14, September.
    10. Qiuhu Shao & Jingfeng Yuan & Jin Lin & Wei Huang & Junwei Ma & Hongxing Ding, 2021. "A SBM-DEA based performance evaluation and optimization for social organizations participating in community and home-based elderly care services," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-25, March.
    11. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    12. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    13. Tran, Trung Hieu & Mao, Yong & Nathanail, Paul & Siebers, Peer-Olaf & Robinson, Darren, 2019. "Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis," Omega, Elsevier, vol. 85(C), pages 156-165.
    14. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    15. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    16. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    17. Harmsen, Robert & Graus, Wina, 2013. "How much CO2 emissions do we reduce by saving electricity? A focus on methods," Energy Policy, Elsevier, vol. 60(C), pages 803-812.
    18. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    19. Haibo Zhou & Hanhui Hu, 2017. "Sustainability Evaluation of Railways in China Using a Two-Stage Network DEA Model with Undesirable Outputs and Shared Resources," Sustainability, MDPI, vol. 9(1), pages 1-23, January.
    20. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    21. Boban Djordjević & Evelin Krmac, 2019. "Evaluation of Energy-Environment Efficiency of European Transport Sectors: Non-Radial DEA and TOPSIS Approach," Energies, MDPI, vol. 12(15), pages 1-27, July.
    22. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2015. "Assessing environmental performance trends in the transport industry: Eco-innovation or catching-up?," Energy Economics, Elsevier, vol. 51(C), pages 570-580.
    23. Fare, Rolf, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    24. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    25. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    26. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    27. Zohreh Moghaddas & Alireza Amirteimoori & Reza Kazemi Matin, 2022. "Selective proportionality and integer-valued data in DEA: an application to performance evaluation of high schools," Operational Research, Springer, vol. 22(4), pages 3435-3459, September.
    28. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    29. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    30. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    31. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    32. Gong, Xiaoxing & Wu, Xiaofan & Luo, Meifeng, 2019. "Company performance and environmental efficiency: A case study for shipping enterprises," Transport Policy, Elsevier, vol. 82(C), pages 96-106.
    33. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, July.
    34. Cem Işık, 2013. "The Importance of Creating a Competitive Advantage and Investing in Information Technology for Modern Economies: an ARDL Test Approach from Turkey," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(4), pages 387-405, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    2. Bretholt, Abraham & Pan, Jeh-Nan, 2013. "Evolving the latent variable model as an environmental DEA technology," Omega, Elsevier, vol. 41(2), pages 315-325.
    3. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    4. Lu, Ching-Cheng & Chiu, Yung-Ho & Shyu, Ming-Kuang & Lee, Jen-Hui, 2013. "Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model," Economic Modelling, Elsevier, vol. 32(C), pages 130-135.
    5. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    6. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2015. "Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    7. Xiang Ji & Jiasen Sun & Qunwei Wang & Qianqian Yuan, 2019. "Revealing Energy Over-Consumption and Pollutant Over-Emission Behind GDP: A New Multi-criteria Sustainable Measure," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1391-1421, December.
    8. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    9. Afzalinejad, Mohammad, 2020. "Reverse efficiency measures for environmental assessment in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    10. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    11. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    12. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    13. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.
    14. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    15. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    16. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    17. Mushtaq Taleb & Ruzelan Khalid & Ali Emrouznejad & Razamin Ramli, 2023. "Environmental efficiency under weak disposability: an improved super efficiency data envelopment analysis model with application for assessment of port operations considering NetZero," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6627-6656, July.
    18. Jiang, Lei & Zhou, Haifeng & He, Shixiong, 2021. "Does energy efficiency increase at the expense of output performance: Evidence from manufacturing firms in Jiangsu province, China," Energy, Elsevier, vol. 220(C).
    19. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    20. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:5:d:10.1007_s10668-023-04295-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.