IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v11y1999i1p5-42.html
   My bibliography  Save this article

RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA

Author

Listed:
  • William Cooper
  • Kyung Park
  • Jesus Pastor

Abstract

Generalized Efficiency Measures (GEMS) for use in DEA are developed and analyzed in a context of differing models where they might be employed. The additive model of DEA is accorded a central role and developed in association with a new measure of efficiency referred to as RAM (Range Adjusted Measure). The need for separately treating input oriented and output oriented approaches to efficient measurement is eliminated because additive models effect their evaluations by maximizing distance from the efficient frontier (in ℓ 1 , or weighted ℓ 1 , measure) and thereby simultaneously maximize outputs and minimize inputs. Contacts with other models and approaches are maintained with theorems and accompanying proofs to ensure the validity of the thus identified relations. New criteria are supplied, both managerial and mathematical, for evaluating proposed measures. The concept of “approximating models” is used to further extend these possibilities. The focus of the paper is on the “physical” aspects of performance involved in “technical” and “mix” inefficiencies. However, an Appendix shows how “overall,” “allocative” and “technical” inefficiencies may be incorporated in additive models. Copyright Kluwer Academic Publishers 1999

Suggested Citation

  • William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
  • Handle: RePEc:kap:jproda:v:11:y:1999:i:1:p:5-42
    DOI: 10.1023/A:1007701304281
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1007701304281
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    2. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    3. Knox Lovell, C. A., 1995. "Measuring the macroeconomic performance of the Taiwanese economy," International Journal of Production Economics, Elsevier, vol. 39(1-2), pages 165-178, April.
    4. Henry Tulkens, 1993. "On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit," Journal of Productivity Analysis, Springer, vol. 4(1), pages 183-210, June.
    5. Berger, Allen N. & Humphrey, David B., 1997. "Efficiency of financial institutions: International survey and directions for future research," European Journal of Operational Research, Elsevier, vol. 98(2), pages 175-212, April.
    6. Thanassoulis, E. & Dyson, R. G., 1992. "Estimating preferred target input-output levels using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 56(1), pages 80-97, January.
    7. W. Briec, 1997. "A Graph-Type Extension of Farrell Technical Efficiency Measure," Journal of Productivity Analysis, Springer, vol. 8(1), pages 95-110, March.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    10. Banker, Rajiv D. & Chang, Hsihui & Cooper, William W., 1996. "Equivalence and implementation of alternative methods for determining returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 89(3), pages 473-481, March.
    11. Borger, Bruno De & Ferrier, Gary D. & Kerstens, Kristiaan, 1998. "The choice of a technical efficiency measure on the free disposal hull reference technology: A comparison using US banking data," European Journal of Operational Research, Elsevier, vol. 105(3), pages 427-446, March.
    12. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    13. Charnes, A. & Cooper, W. W., 1984. "The non-archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Fare," European Journal of Operational Research, Elsevier, vol. 15(3), pages 333-334, March.
    14. Zieschang, Kimberly D., 1984. "An extended farrell technical efficiency measure," Journal of Economic Theory, Elsevier, vol. 33(2), pages 387-396, August.
    15. M. Halme & T. Joro & P. Korhonen & S. Salo & J. Wallenius, 1998. "Value Efficiency Analysis for Incorporating Preference Information in Data Envelopment Analysis," Working Papers ir98054, International Institute for Applied Systems Analysis.
    16. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    17. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    18. Charnes, A. & Cooper, W. W. & Seiford, L. & Stutz, J., 1982. "A multiplicative model for efficiency analysis," Socio-Economic Planning Sciences, Elsevier, vol. 16(5), pages 223-224.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:11:y:1999:i:1:p:5-42. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.