IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v23y2002i1p29-43.html
   My bibliography  Save this article

Plant Level Productivity, Efficiency, and Environmental Performance of the Container Glass Industry

Author

Listed:
  • Gale Boyd
  • George Tolley
  • Joseph Pang

Abstract

This paper presents a methodology and empirical results based on theMalmquist productivity index. We measure productivity while treatingpollution as an undesirable output. Our estimates show that technicalchange has contributed to productivity and environmental performancegrowth in the container glass industry, an energy and pollution intensivesector. Changes in inter-plant efficiency over time have made thisproductivity growth more rapid than otherwise would have occurred withthe underlying technical change. The efficiency estimates show that thereare both opportunities to improve productivity and reduce pollution in thisindustry, as well as productivity losses associated with the emissionscontrol. The shadow prices for NOx, the undesirable output we analyze,is quite high compared to other regulated sectors. Copyright Kluwer Academic Publishers 2002

Suggested Citation

  • Gale Boyd & George Tolley & Joseph Pang, 2002. "Plant Level Productivity, Efficiency, and Environmental Performance of the Container Glass Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(1), pages 29-43, September.
  • Handle: RePEc:kap:enreec:v:23:y:2002:i:1:p:29-43
    DOI: 10.1023/A:1020236517937
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1020236517937
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1020236517937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William A Pizer & Jhih-Shyang Shih & Richard D Morgenstern, 1997. "Are We Overstating the Economic Costs of Environmental Protection?," Working Papers 97-12, Center for Economic Studies, U.S. Census Bureau.
    2. Boyd, Gale A. & McClelland, John D., 1999. "The Impact of Environmental Constraints on Productivity Improvement in Integrated Paper Plants," Journal of Environmental Economics and Management, Elsevier, vol. 38(2), pages 121-142, September.
    3. Karen Palmer & Wallace E. Oates & Paul R. Portney & Karen Palmer & Wallace E. Oates & Paul R. Portney, 2004. "Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm?," Chapters, in: Environmental Policy and Fiscal Federalism, chapter 3, pages 53-66, Edward Elgar Publishing.
    4. Wayne B Gray & Ronald J Shadbegian, 1993. "Environmental Regulation And Manufacturing Productivity At The Plant Level," Working Papers 93-6, Center for Economic Studies, U.S. Census Bureau.
    5. Yaisawarng, Suthathip & Klein, J Douglass, 1994. "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
    6. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    7. Fare, Rolf, et al, 1993. "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 374-380, May.
    8. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    9. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruce Domazlicky & William Weber, 2004. "Does Environmental Protection Lead to Slower Productivity Growth in the Chemical Industry?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 301-324, July.
    2. Ambec, Stefan & Barla, Philippe, 2001. "Productivité et réglementation environnementale: une analyse de l'hypothèse de Porter," Cahiers de recherche 0107, Université Laval - Département d'économique.
    3. Shiyi Chen & Wolfgang Härdle, 2014. "Dynamic activity analysis model-based win-win development forecasting under environment regulations in China," Computational Statistics, Springer, vol. 29(6), pages 1543-1570, December.
    4. Shital Sharma, 2013. "Environmental Regulation, Abatement, and Productivity: A Frontier Analysis," Working Papers 13-51, Center for Economic Studies, U.S. Census Bureau.
    5. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    6. Shiyi Chen & Wolfgang Karl Härdle, 2012. "Dynamic Activity Analysis Model Based Win-Win Development Forecasting Under the Environmental Regulation in China," SFB 649 Discussion Papers SFB649DP2012-002, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    8. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    9. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    10. Van Ha, Nguyen & Kant, Shashi & Maclaren, Virginia, 2008. "Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam," Ecological Economics, Elsevier, vol. 65(1), pages 98-110, March.
    11. Arnaud Abad & Paola Ravelojaona, 2020. "A Generalization of Environmental Productivity Analysis," Working Papers hal-02964799, HAL.
    12. Mario Coccia & Greta Falavigna & Alessandro Manello, 2015. "The impact of hybrid public and market-oriented financing mechanisms on the scientific portfolio and performances of public research labs: a scientometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 151-168, January.
    13. Hailu, Atakelty & Hailu, Atakelty, 2003. "Pollution abatement and productivity performance of regional Canadian pulp and paper industries," Journal of Forest Economics, Elsevier, vol. 9(1), pages 5-25.
    14. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    15. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
    16. Shadbegian, Ronald J. & Gray, Wayne B., 2005. "Pollution abatement expenditures and plant-level productivity: A production function approach," Ecological Economics, Elsevier, vol. 54(2-3), pages 196-208, August.
    17. Chen, Shiyi, 2013. "What is the potential impact of a taxation system reform on carbon abatement and industrial growth in China?," Economic Systems, Elsevier, vol. 37(3), pages 369-386.
    18. Yangho Chung & Rolf Fare, 1995. "Productivity and Undesirable Outputs: A Directional Distance Function Approach," Microeconomics 9511002, University Library of Munich, Germany, revised 09 Nov 1995.
    19. Subhash C. Ray, 2014. "Data Envelopment Analysis: An Overview," Working papers 2014-33, University of Connecticut, Department of Economics.
    20. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:23:y:2002:i:1:p:29-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.