IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v13y2000i2p93-103.html
   My bibliography  Save this article

Theory and Application of Directional Distance Functions

Author

Listed:
  • Rolf Färe

    ()

  • Shawna Grosskopf

    ()

Abstract

In 1957 Farrell demonstrated how cost inefficiency could be decomposed into two mutually exclusive and exhaustive components: technical and allocative inefficiency. This result is consequence of the fact that—as shown by Shephard—the cost function and the input distance function (the reciprocal of Farrell's technical efficiency measure) are ‘dual’ to each other. Similarly, the revenue function and the output distance function are dual providing the basis for the decomposition of revenue inefficiency into technical and allocative components (see for example, Färe, Grosskopf and Lovell (1994)). Here we extend those results to include the directional distance function and its dual, the profit function. This provides the basis for defining and decomposing profit efficiency. As we show, the output and input distance functions (reciprocals of Farrell efficiency measures) are special cases of the directional distance function. We also show how to use the directional distance function as a tool for measuring capacity utilization using DEA type techniques. Copyright Kluwer Academic Publishers 2000

Suggested Citation

  • Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
  • Handle: RePEc:kap:jproda:v:13:y:2000:i:2:p:93-103
    DOI: 10.1023/A:1007844628920
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1007844628920
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fare, Rolf & Grosskopf, Shawna, 1997. "Profit efficiency, Farrell decompositions and the Mahler inequality1," Economics Letters, Elsevier, vol. 57(3), pages 283-287, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:13:y:2000:i:2:p:93-103. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.