IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v51y2015icp24-28.html
   My bibliography  Save this article

Centralized resource allocation based on efficiency analysis for step-by-step improvement paths

Author

Listed:
  • Fang, Lei

Abstract

The existing centralized resource allocation models often assume that all of the DMUs are efficient after resource allocation. For the DMU with a very low efficiency score, it means the dramatic reduction of the resources, which can cause the organizational resistance. In addition, in reality, it is particularly difficult for the DMUs to achieve their target efficiencies in a single step, especially when they are far from the efficient frontier. Thus, gradual progress towards benchmarking targets is gaining importance. In this paper, we present a new approach for resource allocation based on efficiency analysis under a centralized decision-making environment. Through our approach, the central decision-maker can obtain a sequence of intermediate benchmark targets based on efficiency analysis, which provide a level-wise improvement path to direct the DMUs to reach their ultimate targets on the efficient frontier in an implementable and realistic manner. Numerical examples are presented to illustrate the application procedure of the proposed approach.

Suggested Citation

  • Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.
  • Handle: RePEc:eee:jomega:v:51:y:2015:i:c:p:24-28
    DOI: 10.1016/j.omega.2014.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048314001042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2014.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Lei, 2013. "A generalized DEA model for centralized resource allocation," European Journal of Operational Research, Elsevier, vol. 228(2), pages 405-412.
    2. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    3. Cecilio Mar-Molinero & Diego Prior & Maria-Manuela Segovia & Fabiola Portillo, 2014. "On centralized resource utilization and its reallocation by using DEA," Annals of Operations Research, Springer, vol. 221(1), pages 273-283, October.
    4. Du, Juan & Liang, Liang & Chen, Yao & Bi, Gong-bing, 2010. "DEA-based production planning," Omega, Elsevier, vol. 38(1-2), pages 105-112, February.
    5. Yu, Ming-Miin & Chern, Ching-Chin & Hsiao, Bo, 2013. "Human resource rightsizing using centralized data envelopment analysis: Evidence from Taiwan's Airports," Omega, Elsevier, vol. 41(1), pages 119-130.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Brissimis, Sophocles N. & Zervopoulos, Panagiotis D., 2012. "Developing a step-by-step effectiveness assessment model for customer-oriented service organizations," European Journal of Operational Research, Elsevier, vol. 223(1), pages 226-233.
    8. Asmild, Mette & Paradi, Joseph C. & Pastor, Jesus T., 2009. "Centralized resource allocation BCC models," Omega, Elsevier, vol. 37(1), pages 40-49, February.
    9. Fang, Lei & Li, Hecheng, 2015. "Cost efficiency in data envelopment analysis under the law of one price," European Journal of Operational Research, Elsevier, vol. 240(2), pages 488-492.
    10. Lozano, S. & Villa, G. & Adenso-Díaz, B., 2004. "Centralised target setting for regional recycling operations using DEA," Omega, Elsevier, vol. 32(2), pages 101-110, April.
    11. Nasim Nasrabadi & Akram Dehnokhalaji & Narsis Kiani & Pekka Korhonen & Jyrki Wallenius, 2012. "Resource allocation for performance improvement," Annals of Operations Research, Springer, vol. 196(1), pages 459-468, July.
    12. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    13. Sebastián Lozano & Gabriel Villa, 2004. "Centralized Resource Allocation Using Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 22(1), pages 143-161, July.
    14. Sharma, Mithun J. & Yu, Song Jin, 2010. "Benchmark optimization and attribute identification for improvement of container terminals," European Journal of Operational Research, Elsevier, vol. 201(2), pages 568-580, March.
    15. Varmaz, Armin & Varwig, Andreas & Poddig, Thorsten, 2013. "Centralized resource planning and Yardstick competition," Omega, Elsevier, vol. 41(1), pages 112-118.
    16. Pekka Korhonen & Mikko Syrjänen, 2004. "Resource Allocation Based on Efficiency Analysis," Management Science, INFORMS, vol. 50(8), pages 1134-1144, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    2. Yu, Ming-Miin & Chen, Li-Hsueh, 2016. "Centralized resource allocation with emission resistance in a two-stage production system: Evidence from a Taiwan’s container shipping company," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 650-671.
    3. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    4. Ane Elixabete Ripoll-Zarraga & Sebastián Lozano, 2020. "A centralised DEA approach to resource reallocation in Spanish airports," Annals of Operations Research, Springer, vol. 288(2), pages 701-732, May.
    5. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    6. Lozano, Sebastián & Contreras, Ignacio, 2022. "Centralised resource allocation using Lexicographic Goal Programming. Application to the Spanish public university system," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    7. Arocena, Pablo & Cabasés, Fermín & Pascual, Pedro, 2022. "A centralized directional distance model for efficient and horizontally equitable grants allocation to local governments," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    8. Xiong, Xi & Yang, Guo-liang & Zhou, De-qun & Wang, Zi-long, 2022. "How to allocate multi-period research resources? Centralized resource allocation for public universities in China using a parallel DEA-based approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Hien Thu Pham & Antonio Peyrache, 2015. "Industry Inefficiency Measures: A Unifying Approximation Proposition," CEPA Working Papers Series WP102015, School of Economics, University of Queensland, Australia.
    10. Fang, Lei, 2013. "A generalized DEA model for centralized resource allocation," European Journal of Operational Research, Elsevier, vol. 228(2), pages 405-412.
    11. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    12. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    13. Zuoren Sun & Rundong Luo & Dequn Zhou, 2015. "Optimal Path for Controlling Sectoral CO 2 Emissions Among China’s Regions: A Centralized DEA Approach," Sustainability, MDPI, vol. 8(1), pages 1-20, December.
    14. Contreras, I. & Lozano, S., 2020. "Allocating additional resources to public universities. A DEA bargaining approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    15. Jie Wu & Qingyuan Zhu & Wade D Cook & Joe Zhu, 2016. "Best cooperative partner selection and input resource reallocation using DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1221-1237, September.
    16. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    17. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    18. Cesaroni, Giovanni, 2020. "Technically and cost-efficient centralized allocations in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    19. Bo Hsiao & LihChyun Shu & Ming-Miin Yu & Li-Kang Shen & Ding-Jiun Wang, 2017. "Performance evaluation of the Taiwan railway administration," Annals of Operations Research, Springer, vol. 259(1), pages 119-156, December.
    20. Afsharian, Mohsen & Ahn, Heinz & Thanassoulis, Emmanuel, 2019. "A frontier-based system of incentives for units in organisations with varying degrees of decentralisation," European Journal of Operational Research, Elsevier, vol. 275(1), pages 224-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:51:y:2015:i:c:p:24-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.