IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v84y2022ics0038012122002208.html
   My bibliography  Save this article

Centralised resource allocation using Lexicographic Goal Programming. Application to the Spanish public university system

Author

Listed:
  • Lozano, Sebastián
  • Contreras, Ignacio

Abstract

This paper deals with Data Envelopment Analysis (DEA) in centralised settings in which the operating units belong to the same organisation. In such a scenario, a global system-wide perspective may be adopted as regards resource allocation and target setting. In this paper, a new Lexicographic Goal Programming (lexGP) approach is proposed using three priority levels: the aggregated input consumption and output production goals; the input and output goals of the individual operating units; and the technical efficiency of the computed targets. It is assumed that the goals for the overall organisation are established by the Central Decision-Maker (CDM) and that they are consistent with those of the individual operating units. The proposed approach has been applied to the Spanish public university system, comprising 47 institutions. Given the CDM preferences in terms of input and output aggregate goals and relative importance weights, specific technical efficient targets have been computed for each university. The results show that the proposed approach is more suitable than the non-centralised DEA approach and produces targets that are more effective than other centralised resource allocation approaches in the sense that they are much closer to both the aggregate goals of the CDM and the specific goals of each university.

Suggested Citation

  • Lozano, Sebastián & Contreras, Ignacio, 2022. "Centralised resource allocation using Lexicographic Goal Programming. Application to the Spanish public university system," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122002208
    DOI: 10.1016/j.seps.2022.101419
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122002208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pachkova, Elena V., 2009. "Restricted reallocation of resources," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1049-1057, August.
    2. Chih-Ching Yang, 2017. "Local resource reallocation considering practical feasibility: a centralized data envelopment analysis approach," Applied Economics, Taylor & Francis Journals, vol. 49(56), pages 5709-5721, December.
    3. Contreras, I. & Lozano, S., 2020. "Allocating additional resources to public universities. A DEA bargaining approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    4. Tiantan Yang & Pingchun Wang & Feng Li, 2018. "Centralized Resource Allocation and Target Setting Based on Data Envelopment Analysis Model," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, February.
    5. S Lozano, 2014. "Company-wide production planning using a multiple technology DEA approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(5), pages 723-734, May.
    6. Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.
    7. Du, Juan & Liang, Liang & Chen, Yao & Bi, Gong-bing, 2010. "DEA-based production planning," Omega, Elsevier, vol. 38(1-2), pages 105-112, February.
    8. Arocena, Pablo & Cabasés, Fermín & Pascual, Pedro, 2022. "A centralized directional distance model for efficient and horizontally equitable grants allocation to local governments," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    9. Asmild, Mette & Paradi, Joseph C. & Pastor, Jesus T., 2009. "Centralized resource allocation BCC models," Omega, Elsevier, vol. 37(1), pages 40-49, February.
    10. Contreras, I. & Lozano, S., 2022. "Size efficiency, splits and merger gains, and centralized resource reallocation of Spanish public universities," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    11. Yang, Min & Li, Yong Jun & Liang, Liang, 2015. "A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 246(1), pages 209-217.
    12. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    13. Chih-Ching Yang, 2017. "Measuring health indicators and allocating health resources: a DEA-based approach," Health Care Management Science, Springer, vol. 20(3), pages 365-378, September.
    14. S Lozano & G Villa, 2005. "Centralized DEA models with the possibility of downsizing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 357-364, April.
    15. Sebastián Lozano & Gabriel Villa, 2004. "Centralized Resource Allocation Using Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 22(1), pages 143-161, July.
    16. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    17. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    18. Pekka Korhonen & Mikko Syrjänen, 2004. "Resource Allocation Based on Efficiency Analysis," Management Science, INFORMS, vol. 50(8), pages 1134-1144, August.
    19. Feng Li & Zeyu Yan & Qingyuan Zhu & Miao Yin & Gang Kou, 2021. "Allocating a fixed cost across decision making units with explicitly considering efficiency rankings," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(6), pages 1432-1446, June.
    20. Yu, Ming-Miin & Chen, Li-Hsueh, 2016. "Centralized resource allocation with emission resistance in a two-stage production system: Evidence from a Taiwan’s container shipping company," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 650-671.
    21. Shu-Man Chang & Jaw-Shen Wang & Ming-Miin Yu & Kuo-Chung Shang & Shih-Hao Lin & Bo Hsiao, 2015. "An application of centralized data envelopment analysis in resource allocation in container terminal operations," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(8), pages 776-788, November.
    22. Fang, Lei, 2013. "A generalized DEA model for centralized resource allocation," European Journal of Operational Research, Elsevier, vol. 228(2), pages 405-412.
    23. Du, Juan & Cook, Wade D. & Liang, Liang & Zhu, Joe, 2014. "Fixed cost and resource allocation based on DEA cross-efficiency," European Journal of Operational Research, Elsevier, vol. 235(1), pages 206-214.
    24. Lei Fang & Hecheng Li & Zhongbin Wang, 2021. "Centralized Resource Allocation Based on the Bargaining Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 38(02), pages 1-18, April.
    25. Hamzeh Amirteimoori & Alireza Amirteimoori & Mahdi Karbasian, 2020. "Performance measurement of gas companies with fixed-sum inputs: a DEA-based model," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 47(7), pages 1591-1603, April.
    26. Sebastián Lozano, 2014. "Nonradial Approach To Allocating Fixed-Costs And Common Revenue Using Centralized Dea," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 29-46.
    27. Cecilio Mar-Molinero & Diego Prior & Maria-Manuela Segovia & Fabiola Portillo, 2014. "On centralized resource utilization and its reallocation by using DEA," Annals of Operations Research, Springer, vol. 221(1), pages 273-283, October.
    28. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    29. Alireza Amirteimoori & Leila Khoshandam & Sohrab Kordrostami, 2013. "Recyclable outputs in production process: a data envelopment analysis approach," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 18(1), pages 62-70.
    30. Youliang Zhang & Hongjun Zhang & Rui Zhang & Zilin Zeng & Zhiteng Wang, 2015. "DEA-based production planning considering influencing factors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1878-1886, November.
    31. Lei Fang, 2016. "A new approach for achievement of the equilibrium efficient frontier with fixed-sum outputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(3), pages 412-420, March.
    32. Nasim Nasrabadi & Akram Dehnokhalaji & Narsis Kiani & Pekka Korhonen & Jyrki Wallenius, 2012. "Resource allocation for performance improvement," Annals of Operations Research, Springer, vol. 196(1), pages 459-468, July.
    33. Alireza Amirteimoori & Simin Masrouri & Feng Yang & Sohrab Kordrostami, 2017. "Context-based competition strategy and performance analysis with fixed-sum outputs: an application to banking sector," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1461-1469, November.
    34. Cesaroni, Giovanni, 2020. "Technically and cost-efficient centralized allocations in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    35. Qingyuan Zhu & Jie Wu & Malin Song & Liang Liang, 2017. "A unique equilibrium efficient frontier with fixed-sum outputs in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1483-1490, December.
    36. Wang, Derek D., 2019. "Performance-based resource allocation for higher education institutions in China," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 66-75.
    37. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    38. Yingying Shao & Gongbing Bi & Feng Yang & Qiong Xia, 2018. "Resource allocation for branch network system with considering heterogeneity based on DEA method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1005-1025, December.
    39. Amirteimoori, Alireza & Kordrostami, Sohrab, 2012. "Production planning in data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 140(1), pages 212-218.
    40. Gabriel Villa & Sebastián Lozano & Sandra Redondo, 2021. "Data Envelopment Analysis Approach to Energy-Saving Projects Selection in an Energy Service Company," Mathematics, MDPI, vol. 9(2), pages 1-15, January.
    41. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    42. Ane Elixabete Ripoll-Zarraga & Sebastián Lozano, 2020. "A centralised DEA approach to resource reallocation in Spanish airports," Annals of Operations Research, Springer, vol. 288(2), pages 701-732, May.
    43. Li, Yongjun & Yang, Min & Chen, Ya & Dai, Qianzhi & Liang, Liang, 2013. "Allocating a fixed cost based on data envelopment analysis and satisfaction degree," Omega, Elsevier, vol. 41(1), pages 55-60.
    44. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    45. Bo Hsiao & LihChyun Shu & Ming-Miin Yu & Li-Kang Shen & Ding-Jiun Wang, 2017. "Performance evaluation of the Taiwan railway administration," Annals of Operations Research, Springer, vol. 259(1), pages 119-156, December.
    46. Romero, Carlos, 2001. "Extended lexicographic goal programming: a unifying approach," Omega, Elsevier, vol. 29(1), pages 63-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    2. Contreras, I. & Lozano, S., 2022. "Size efficiency, splits and merger gains, and centralized resource reallocation of Spanish public universities," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    3. Contreras, I. & Lozano, S., 2020. "Allocating additional resources to public universities. A DEA bargaining approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    4. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    5. Yu, Ming-Miin & Chen, Li-Hsueh, 2016. "Centralized resource allocation with emission resistance in a two-stage production system: Evidence from a Taiwan’s container shipping company," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 650-671.
    6. Ane Elixabete Ripoll-Zarraga & Sebastián Lozano, 2020. "A centralised DEA approach to resource reallocation in Spanish airports," Annals of Operations Research, Springer, vol. 288(2), pages 701-732, May.
    7. Xiong, Xi & Yang, Guo-liang & Zhou, De-qun & Wang, Zi-long, 2022. "How to allocate multi-period research resources? Centralized resource allocation for public universities in China using a parallel DEA-based approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    8. Lozano, Sebastián, 2023. "Bargaining approach for efficiency assessment and target setting with fixed-sum variables," Omega, Elsevier, vol. 114(C).
    9. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    10. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    11. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    12. Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.
    13. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    14. Gupta, Anshu & Pachar, Nomita & Jain, Akansha & Govindan, Kannan & Jha, P.C., 2023. "Resource reallocation strategies for sustainable efficiency improvement of retail chains," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    15. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    16. Hien Thu Pham & Antonio Peyrache, 2015. "Industry Inefficiency Measures: A Unifying Approximation Proposition," CEPA Working Papers Series WP102015, School of Economics, University of Queensland, Australia.
    17. Mehdi Soltanifar & Farhad Hosseinzadeh Lotfi & Hamid Sharafi & Sebastián Lozano, 2022. "Resource allocation and target setting: a CSW–DEA based approach," Annals of Operations Research, Springer, vol. 318(1), pages 557-589, November.
    18. Zhu, Qingyuan & Li, Xingchen & Li, Feng & Wu, Jie & Zhou, Dequn, 2020. "Energy and environmental efficiency of China's transportation sectors under the constraints of energy consumption and environmental pollutions," Energy Economics, Elsevier, vol. 89(C).
    19. Arocena, Pablo & Cabasés, Fermín & Pascual, Pedro, 2022. "A centralized directional distance model for efficient and horizontally equitable grants allocation to local governments," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    20. An, Qingxian & Tao, Xiangyang & Xiong, Beibei & Chen, Xiaohong, 2022. "Frontier-based incentive mechanisms for allocating common revenues or fixed costs," European Journal of Operational Research, Elsevier, vol. 302(1), pages 294-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122002208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.