IDEAS home Printed from https://ideas.repec.org/f/pdi327.html
   My authors  Follow this author

Jingjing Ding

Personal Details

First Name:Jingjing
Middle Name:
Last Name:Ding
Suffix:
RePEc Short-ID:pdi327

Affiliation

School of Management
Hefei University of Technology

Hefei, China
http://som.hfut.edu.cn/
RePEc:edi:smhftcn (more details at EDIRC)

Research output

as
Jump to: Articles Chapters

Articles

  1. Min Yang & Yuqi Wei & Liang Liang & Jingjing Ding & Xianmei Wang, 2021. "Performance evaluation of NBA teams: A non-homogeneous DEA approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(6), pages 1403-1414, June.
  2. Ding, Jingjing & Dong, Wei & Liang, Liang & Zhu, Joe, 2017. "Goal congruence analysis in multi-Division Organizations with shared resources based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 263(3), pages 961-973.
  3. Jingjing Ding & Wei Dong & Gongbing Bi & Liang Liang, 2015. "A decision model for supplier selection in the presence of dual-role factors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(5), pages 737-746, May.
  4. Jingjing Ding & Chenpeng Feng & Gongbing Bi & Liang Liang & M. Khan, 2015. "Cone ratio models with shared resources and nontransparent allocation parameters in network DEA," Journal of Productivity Analysis, Springer, vol. 44(2), pages 137-155, October.
  5. Jingjing Ding & Peng Zhang & Chenpeng Feng, 2015. "Comment on some mathematical properties of a DEA model for the joint determination of efficiencies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(12), pages 1960-1966, December.
  6. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
  7. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
  8. Gongbing Bi & Chenpeng Feng & Jingjing Ding & Liang Liang & Feng Chu, 2014. "The linear formulation of the ZSG-DEA models with different production technologies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(8), pages 1202-1211, August.
  9. Gong-Bing Bi & Jing-Jing Ding & Yan Luo & Liang Liang, 2011. "A New Malmquist Productivity Index Based On Semi-Discretionary Variables With An Application To Commercial Banks Of China," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 713-730.

Chapters

  1. Jingjing Ding & Chenpeng Feng & Huaqing Wu, 2016. "A Radial Framework for Estimating the Efficiency and Returns to Scale of a Multi-component Production System in DEA," International Series in Operations Research & Management Science, in: Shiuh-Nan Hwang & Hsuan-Shih Lee & Joe Zhu (ed.), Handbook of Operations Analytics Using Data Envelopment Analysis, chapter 0, pages 351-384, Springer.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Ding, Jingjing & Dong, Wei & Liang, Liang & Zhu, Joe, 2017. "Goal congruence analysis in multi-Division Organizations with shared resources based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 263(3), pages 961-973.

    Cited by:

    1. Barnabé Walheer, 2019. "Disaggregation for efficiency analysis," Journal of Productivity Analysis, Springer, vol. 51(2), pages 137-151, June.
    2. Walheer, Barnabé, 2019. "Aggregating Farrell efficiencies with private and public inputs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1170-1177.
    3. Ahmad Saleem Tarwneh, 2019. "The Impact of Decentralization Dimensions on Subsidiaries Performance," International Review of Management and Marketing, Econjournals, vol. 9(1), pages 62-71.
    4. Walheer, Barnabé & Zhang, Linjia, 2018. "Profit Luenberger and Malmquist-Luenberger indexes for multi-activity decision making units: the case of the star-rated hotel industry in China," RIEI Working Papers 2018-06, Xi'an Jiaotong-Liverpool University, Research Institute for Economic Integration.
    5. Qingxian An & Xuyang Liu & Yongli Li & Beibei Xiong, 2019. "Resource planning of Chinese commercial banking systems using two-stage inverse data envelopment analysis with undesirable outputs," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-20, June.
    6. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    7. Walheer, Barnabe & Hudik, Marek, 2019. "Reallocation of resources in multidivisional firms: A nonparametric approach," International Journal of Production Economics, Elsevier, vol. 214(C), pages 196-205.

  2. Jingjing Ding & Wei Dong & Gongbing Bi & Liang Liang, 2015. "A decision model for supplier selection in the presence of dual-role factors," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(5), pages 737-746, May.

    Cited by:

    1. Mehdi Toloo & Mona Barat, 2015. "On considering dual-role factor in supplier selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 107-122, August.
    2. Bohlool Ebrahimi & Madjid Tavana & Andreas Kleine & Andreas Dellnitz, 2021. "An epsilon-based data envelopment analysis approach for solving performance measurement problems with interval and ordinal dual-role factors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1103-1124, December.
    3. Dan Li & Yanfeng Li & Yeming Gong & Jiawei Yang, 2021. "Estimation of bank performance from multiple perspectives: an alternative solution to the deposit dilemma," Journal of Productivity Analysis, Springer, vol. 56(2), pages 151-170, December.
    4. Pankaj Dutta & Bharath Jaikumar & Manpreet Singh Arora, 2022. "Applications of data envelopment analysis in supplier selection between 2000 and 2020: a literature review," Annals of Operations Research, Springer, vol. 315(2), pages 1399-1454, August.
    5. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2018. "Dual-role factors for imprecise data envelopment analysis," Omega, Elsevier, vol. 77(C), pages 15-31.
    6. Visani, Franco & Barbieri, Paolo & Di Lascio, F. Marta L. & Raffoni, Anna & Vigo, Daniele, 2016. "Supplier’s total cost of ownership evaluation: a data envelopment analysis approach," Omega, Elsevier, vol. 61(C), pages 141-154.
    7. Rita Shakouri & Maziar Salahi & Sohrab Kordrostami & Jie Wu, 2019. "Flexible measure in the presence of the partial input to output impacts process," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(3), pages 77-98.

  3. Jingjing Ding & Chenpeng Feng & Gongbing Bi & Liang Liang & M. Khan, 2015. "Cone ratio models with shared resources and nontransparent allocation parameters in network DEA," Journal of Productivity Analysis, Springer, vol. 44(2), pages 137-155, October.

    Cited by:

    1. Majid Azadi & Balal Karimi & William Ho & Reza Farzipoor Saen, 2022. "Assessing green performance of power plants by multiple hybrid returns to scale technologies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1177-1211, December.
    2. Antonio Peyrache & Maria C. A. Silva, 2021. "Efficiency and Productivity Analysis from a System Perspective:Historical Overview," CEPA Working Papers Series WP042021, School of Economics, University of Queensland, Australia.
    3. Victor V. Podinovski & Ole Bent Olesen & Cláudia S. Sarrico, 2018. "Nonparametric Production Technologies with Multiple Component Processes," Operations Research, INFORMS, vol. 66(1), pages 282-300, January.
    4. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
    5. Antonio Peyrache & Maria C. A. Silva, 2019. "The Inefficiency of Production Systems and its decomposition," CEPA Working Papers Series WP052019, School of Economics, University of Queensland, Australia.
    6. Ding, Jingjing & Dong, Wei & Liang, Liang & Zhu, Joe, 2017. "Goal congruence analysis in multi-Division Organizations with shared resources based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 263(3), pages 961-973.

  4. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.

    Cited by:

    1. Qiong Xia & Min Li & Huaqing Wu & Zhenggang Lu, 2016. "Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    2. Ma-Lin Song & Ron Fisher & Jian-Lin Wang & Lian-Biao Cui, 2018. "Environmental performance evaluation with big data: theories and methods," Annals of Operations Research, Springer, vol. 270(1), pages 459-472, November.
    3. Chiang Kao & Shiuh-Nan Hwang, 2019. "Efficiency evaluation in the presence of undesirable outputs: the most favorable shadow price approach," Annals of Operations Research, Springer, vol. 278(1), pages 5-16, July.
    4. Wu, Jie & Li, Mingjun & Zhu, Qingyuan & Zhou, Zhixiang & Liang, Liang, 2019. "Energy and environmental efficiency measurement of China's industrial sectors: A DEA model with non-homogeneous inputs and outputs," Energy Economics, Elsevier, vol. 78(C), pages 468-480.
    5. Liu, Yaqin & Zhao, Guohao & Zhao, Yushan, 2016. "An analysis of Chinese provincial carbon dioxide emission efficiencies based on energy consumption structure," Energy Policy, Elsevier, vol. 96(C), pages 524-533.
    6. Kao, Chiang & Hwang, Shiuh-Nan, 2021. "Measuring the effects of undesirable outputs on the efficiency of production units," European Journal of Operational Research, Elsevier, vol. 292(3), pages 996-1003.
    7. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    8. Noor Ramli & Susila Munisamy & Behrouz Arabi, 2013. "Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector," Annals of Operations Research, Springer, vol. 211(1), pages 381-398, December.
    9. Ke Wang & Shiwei Yu & Mo-Jie Li & Yi-Ming Wei, 2015. "Multi-directional efficiency analysis-based regional industrial environmental performance evaluation of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 273-299, February.
    10. Xiaohong Liu & Qingyuan Zhu & Junfei Chu & Xiang Ji & Xingchen Li, 2019. "Environmental Performance and Benchmarking Information for Coal-Fired Power Plants in China: A DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1287-1302, December.
    11. Linlin Zhao & Yong Zha & Kangning Wei & Liang Liang, 2017. "A target-based method for energy saving and carbon emissions reduction in China based on environmental data envelopment analysis," Annals of Operations Research, Springer, vol. 255(1), pages 277-300, August.
    12. Aiyshwariya Paulvannan Kanmani & Renee Obringer & Benjamin Rachunok & Roshanak Nateghi, 2020. "Assessing Global Environmental Sustainability Via an Unsupervised Clustering Framework," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
    13. Yiwen Bian & Kangjuan Lv & Anyu Yu, 2017. "China’s regional energy and carbon dioxide emissions efficiency evaluation with the presence of recovery energy: an interval slacks-based measure approach," Annals of Operations Research, Springer, vol. 255(1), pages 301-321, August.
    14. Sebastián Lozano, 2017. "Technical and environmental efficiency of a two-stage production and abatement system," Annals of Operations Research, Springer, vol. 255(1), pages 199-219, August.
    15. Ziyuan Xie & Guixian Tian & Yongchao Tao, 2022. "A Multi-Criteria Decision-Making Framework for Sustainable Supplier Selection in the Circular Economy and Industry 4.0 Era," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    16. Wu, Jie & Lv, Lin & Sun, Jiasen & Ji, Xiang, 2015. "A comprehensive analysis of China's regional energy saving and emission reduction efficiency: From production and treatment perspectives," Energy Policy, Elsevier, vol. 84(C), pages 166-176.
    17. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    18. Liu, Zhao & Zhang, Huan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2020. "How does industrial policy affect the eco-efficiency of industrial sector? Evidence from China," Applied Energy, Elsevier, vol. 272(C).

  5. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.

    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    3. Wang, Chao & Lim, Ming K & Zhao, Longfeng & Tseng, Ming-Lang & Chien, Chen-Fu & Lev, Benjamin, 2020. "The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview," Omega, Elsevier, vol. 93(C).
    4. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. Matthias Klumpp, 2018. "How to Achieve Supply Chain Sustainability Efficiently? Taming the Triple Bottom Line Split Business Cycle," Sustainability, MDPI, vol. 10(2), pages 1-23, February.
    6. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2015. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," CEEP-BIT Working Papers 84, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    7. Yang, Mian & Hou, Yaru & Fang, Chao & Duan, Hongbo, 2020. "Constructing energy-consuming right trading system for China's manufacturing industry in 2025," Energy Policy, Elsevier, vol. 144(C).
    8. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    9. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    10. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    11. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 457-479, July.
    12. Zhang, Yue-Jun & Wang, Ao-Dong & Tan, Weiping, 2015. "The impact of China's carbon allowance allocation rules on the product prices and emission reduction behaviors of ETS-covered enterprises," Energy Policy, Elsevier, vol. 86(C), pages 176-185.
    13. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    14. Xiangsheng Dou, 2017. "Low Carbon Technology Innovation, Carbon Emissions Trading and Relevant Policy Support for China’s Low Carbon Economy Development," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 172-184.
    15. Jiasen Sun & Guo Li, 2020. "Designing a double auction mechanism for the re-allocation of emission permits," Annals of Operations Research, Springer, vol. 291(1), pages 847-874, August.
    16. Bingquan Liu & Yongqing Li & Rui Hou & Hui Wang, 2019. "Does Urbanization Improve Industrial Water Consumption Efficiency?," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    17. Tingting Liu & Zichen Zheng & Yuneng Du, 2021. "Evaluation on regional science and technology resources allocation in China based on the zero sum gains data envelopment analysis," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1729-1737, August.
    18. Min Yang & Qingxian An & Tao Ding & Pengzhen Yin & Liang Liang, 2019. "Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle," Annals of Operations Research, Springer, vol. 278(1), pages 123-139, July.
    19. Shen, Zhiyang & Baležentis, Tomas & Chen, Xueli & Valdmanis, Vivian, 2018. "Green growth and structural change in Chinese agricultural sector during 1997–2014," China Economic Review, Elsevier, vol. 51(C), pages 83-96.
    20. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    21. Chu, Junfei & Wu, Jie & Chu, Chengbin & Zhang, Tinglong, 2020. "DEA-based fixed cost allocation in two-stage systems: Leader-follower and satisfaction degree bargaining game approaches," Omega, Elsevier, vol. 94(C).
    22. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors," MPRA Paper 64703, University Library of Munich, Germany.
    23. Xi Jin & Bin Zou & Chan Wang & Kaifeng Rao & Xiaowen Tang, 2019. "Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    24. Qunli Wu & Hongjie Zhang, 2019. "Research on Optimization Allocation Scheme of Initial Carbon Emission Quota from the Perspective of Welfare Effect," Energies, MDPI, vol. 12(11), pages 1-27, June.
    25. Yong Wang & Han Zhao & Fumei Duan & Ying Wang, 2018. "Initial Provincial Allocation and Equity Evaluation of China’s Carbon Emission Rights—Based on the Improved TOPSIS Method," Sustainability, MDPI, vol. 10(4), pages 1-27, March.
    26. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    27. Shihong Zeng & Yan Xu & Liming Wang & Jiuying Chen & Qirong Li, 2016. "Forecasting the Allocative Efficiency of Carbon Emission Allowance Financial Assets in China at the Provincial Level in 2020," Energies, MDPI, vol. 9(5), pages 1-18, May.
    28. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
    29. Zuoren Sun & Rundong Luo & Dequn Zhou, 2015. "Optimal Path for Controlling Sectoral CO 2 Emissions Among China’s Regions: A Centralized DEA Approach," Sustainability, MDPI, vol. 8(1), pages 1-20, December.
    30. Matthias Klumpp, 2017. "Do Forwarders Improve Sustainability Efficiency? Evidence from a European DEA Malmquist Index Calculation," Sustainability, MDPI, vol. 9(5), pages 1-33, May.
    31. Jiasen Sun & Yelin Fu & Xiang Ji & Ray Y. Zhong, 2017. "Allocation of emission permits using DEA-game-theoretic model," Operational Research, Springer, vol. 17(3), pages 867-884, October.
    32. Julien Chevallier & Stéphane Goutte, 2017. "Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of $$\hbox {CO}_2$$ CO 2 and fuel-switching," Annals of Operations Research, Springer, vol. 255(1), pages 169-197, August.
    33. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    34. Ding, Jingjing & Dong, Wei & Liang, Liang & Zhu, Joe, 2017. "Goal congruence analysis in multi-Division Organizations with shared resources based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 263(3), pages 961-973.
    35. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.

  6. Gongbing Bi & Chenpeng Feng & Jingjing Ding & Liang Liang & Feng Chu, 2014. "The linear formulation of the ZSG-DEA models with different production technologies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(8), pages 1202-1211, August.

    Cited by:

    1. Thanasis Bouzidis & Giannis Karagiannis, 2022. "Extending the zero-sum gains data envelopment analysis model," Journal of Productivity Analysis, Springer, vol. 58(2), pages 171-184, December.
    2. Xi Xiong & Guo-liang Yang & Kai-di Liu & De-qun Zhou, 2022. "A proposed fixed-sum carryovers reallocation DEA approach for social scientific resources of Chinese public universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4097-4121, July.
    3. Bouzidis, Thanasis & Karagiannis, Giannis, 2022. "An alternative ranking of DMUs performance for the ZSG-DEA model," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    4. Tingting Liu & Zichen Zheng & Yuneng Du, 2021. "Evaluation on regional science and technology resources allocation in China based on the zero sum gains data envelopment analysis," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1729-1737, August.
    5. Thanasis Bouzidis & Giannis Karagiannis, 2022. "A note on the zero-sum gains data envelopment analysis model," Operational Research, Springer, vol. 22(3), pages 1737-1758, July.
    6. Alexandre de Cássio Rodrigues & Carlos Alberto Gonçalves & Tiago Silveira Gontijo, 2019. "A two-stage DEA model to evaluate the efficiency of countries at the Rio 2016 Olympic Games," Economics Bulletin, AccessEcon, vol. 39(2), pages 1538-1545.
    7. Thanasis Bouzidis & Giannis Karagiannis, 2021. "An Alternative Ranking of DMUs Performance for the ZGS-DEA Model," Discussion Paper Series 2021_12, Department of Economics, University of Macedonia, revised Oct 2021.
    8. Thanasis Bouzidis & Giannis Karagiannis, 2022. "Extending the Zero-Sum Gains Data Envelopment Analysis Model," Discussion Paper Series 2022_06, Department of Economics, University of Macedonia, revised Aug 2022.

  7. Gong-Bing Bi & Jing-Jing Ding & Yan Luo & Liang Liang, 2011. "A New Malmquist Productivity Index Based On Semi-Discretionary Variables With An Application To Commercial Banks Of China," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 713-730.

    Cited by:

    1. Bojiang Yang & Youliang Zhang & Hongjun Zhang & Rui Zhang & Baoyu Xu, 2016. "Factor-specific Malmquist productivity index based on common weights DEA," Operational Research, Springer, vol. 16(1), pages 51-70, April.
    2. Michael C. Nwogugu, 2020. "Decision-Making, Sub-Additive Recursive "Matching" Noise And Biases In Risk-Weighted Stock/Bond Index Calculation Methods In Incomplete Markets With Partially Observable Multi-Attribute Pref," Papers 2005.01708, arXiv.org.

Chapters

    Sorry, no citations of chapters recorded.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Jingjing Ding should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.