IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v272y2020ics0306261920307182.html
   My bibliography  Save this article

How does industrial policy affect the eco-efficiency of industrial sector? Evidence from China

Author

Listed:
  • Liu, Zhao
  • Zhang, Huan
  • Zhang, Yue-Jun
  • Zhu, Tian-Tian

Abstract

The industrial sector is the largest energy consumption sector and major source of environmental pollution in China. Improving the industrial eco-efficiency is significant for China to realize high-quality development. Based on the panel data of industrial sector in China’s 30 provinces from 2006 to 2015, this paper first adopts a dynamic network data envelopment analysis to evaluate the eco-efficiency of industrial sector, and then uses panel Tobit regression model to investigate the impacts of industrial policies on the eco-efficiency of industrial sector. The results reveal that, (1) the overall eco-efficiency of China’s provincial industrial sector is 0.7581 during 2006–2015, and the average efficiency of the industrial production process is higher than that of the waste treatment process. (2) The eco-efficiency of the industrial sector differs greatly by region, the eastern region is the highest, followed by the western and central regions, and the northeast is the lowest. (3) Industrial agglomeration impedes the improvement of industrial eco-efficiency, while industrial structure rationalization can promote industrial eco-efficiency. (4) The influence of industrial agglomeration and industrial structure rationalization on the efficiency of industrial waste treatment process is larger than that of the industrial production process. The findings of this paper reveal the importance of improving the efficiency of industrial sub-processes, and can also offer lessons for other industrialized nations to improve the industrial eco-efficiency.

Suggested Citation

  • Liu, Zhao & Zhang, Huan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2020. "How does industrial policy affect the eco-efficiency of industrial sector? Evidence from China," Applied Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307182
    DOI: 10.1016/j.apenergy.2020.115206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    2. Haider, Salman & Danish, Mohd Shadab & Sharma, Ruchi, 2019. "Assessing energy efficiency of Indian paper industry and influencing factors: A slack-based firm-level analysis," Energy Economics, Elsevier, vol. 81(C), pages 454-464.
    3. Wang, Shaojian & Liu, Xiaoping, 2017. "China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving forces," Applied Energy, Elsevier, vol. 200(C), pages 204-214.
    4. Zhu, Bangzhu & Zhang, Mengfan & Zhou, Yanhua & Wang, Ping & Sheng, Jichuan & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach," Energy Policy, Elsevier, vol. 134(C).
    5. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    6. Zuberi, M. Jibran S. & Santoro, Marina & Eberle, Armin & Bhadbhade, Navdeep & Sulzer, Sabine & Wellig, Beat & Patel, Martin K., 2020. "A detailed review on current status of energy efficiency improvement in the Swiss industry sector," Energy Policy, Elsevier, vol. 137(C).
    7. He, Yong & Liao, Nuo & Zhou, Ya, 2018. "Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN," Energy, Elsevier, vol. 142(C), pages 79-89.
    8. Wu, Jie & Li, Mingjun & Zhu, Qingyuan & Zhou, Zhixiang & Liang, Liang, 2019. "Energy and environmental efficiency measurement of China's industrial sectors: A DEA model with non-homogeneous inputs and outputs," Energy Economics, Elsevier, vol. 78(C), pages 468-480.
    9. Chowdhury, Jahedul Islam & Hu, Yukun & Haltas, Ismail & Balta-Ozkan, Nazmiye & Matthew, George Jr. & Varga, Liz, 2018. "Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1153-1178.
    10. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
    11. Lim, Sungmook & Zhu, Joe, 2016. "A note on two-stage network DEA model: Frontier projection and duality," European Journal of Operational Research, Elsevier, vol. 248(1), pages 342-346.
    12. Gidion, Dickson K. & Hong, Jin & Adams, Magdalene Z.A. & Khoveyni, Mohammad, 2019. "Network DEA models for assessing urban water utility efficiency," Utilities Policy, Elsevier, vol. 57(C), pages 48-58.
    13. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
    14. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    15. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
    16. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    17. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    18. Olfat, Laya & Amiri, Maghsoud & Bamdad Soufi, Jahanyar & Pishdar, Mahsa, 2016. "A dynamic network efficiency measurement of airports performance considering sustainable development concept: A fuzzy dynamic network-DEA approach," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 272-290.
    19. Ouyang, Wendi & Yang, Jian-bo, 2020. "The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model," Energy, Elsevier, vol. 197(C).
    20. Mori, Tomoya & Smith, Tony E., 2015. "On the spatial scale of industrial agglomerations," Journal of Urban Economics, Elsevier, vol. 89(C), pages 1-20.
    21. An, Hui & Xu, Jianjun & Ma, Xuejiao, 2020. "Does technological progress and industrial structure reduce electricity consumption? Evidence from spatial and heterogeneity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 206-220.
    22. Liu, Xiaoyu & Duan, Zhiyuan & Shan, Yuli & Duan, Haiyan & Wang, Shuo & Song, Junnian & Wang, Xian'en, 2019. "Low-carbon developments in Northeast China: Evidence from cities," Applied Energy, Elsevier, vol. 236(C), pages 1019-1033.
    23. Lin, Boqiang & Zhu, Junpeng, 2020. "Chinese electricity demand and electricity consumption efficiency: Do the structural changes matter?," Applied Energy, Elsevier, vol. 262(C).
    24. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    25. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    26. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    27. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    28. Cornelis, Erwin, 2019. "History and prospect of voluntary agreements on industrial energy efficiency in Europe," Energy Policy, Elsevier, vol. 132(C), pages 567-582.
    29. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    30. Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
    31. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    32. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Zhaohui & Tan, Yafei, 2022. "Can green industrial policy promote green innovation in heavily polluting enterprises? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 59-75.
    2. Chen, Zhenling & Zhao, Weigang & Zheng, Heyun, 2021. "Potential output gap in China's regional coal-fired power sector under the constraint of carbon emission reduction," Energy Policy, Elsevier, vol. 148(PA).
    3. Ke Liu & Yurong Qiao & Qian Zhou, 2021. "Analysis of China’s Industrial Green Development Efficiency and Driving Factors: Research Based on MGWR," IJERPH, MDPI, vol. 18(8), pages 1-22, April.
    4. Zaijun Li & Xiang Zheng & Dongqi Sun, 2021. "The Influencing Effects of Industrial Eco-Efficiency on Carbon Emissions in the Yangtze River Delta," Energies, MDPI, vol. 14(23), pages 1-19, December.
    5. Xu, Yue & Tian, Shu & Wang, Qingsong & Yuan, Xueliang & Ma, Qiao & Liu, Mengyue & Xu, Zhaopeng & Liu, Jixiang & Xu, Xiang & Liu, Chengqing, 2021. "Optimization path of energy-economy system from the perspective of minimum industrial structure adjustment," Energy, Elsevier, vol. 237(C).
    6. Liangen Zeng, 2021. "China’s Eco-Efficiency: Regional Differences and Influencing Factors Based on a Spatial Panel Data Approach," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    7. Yiming Hou & Guanwen Yin & Yanbin Chen, 2022. "Environmental Regulation, Financial Pressure and Industrial Ecological Efficiency of Resource-Based Cities in China: Spatiotemporal Characteristics and Impact Mechanism," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    8. Kai He & Nan Zhu & Wu Jiang & Chuanjin Zhu, 2022. "Efficiency Evaluation of Chinese Provincial Industrial System Based on Network DEA Method," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    9. Kang Zhao & Rui Zhang & Hong Liu & Geyi Wang & Xialing Sun, 2021. "Resource Endowment, Industrial Structure, and Green Development of the Yellow River Basin," Sustainability, MDPI, vol. 13(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuejiao Ma & Qichuan Jiang, 2019. "How to Balance the Trade-off between Economic Development and Climate Change?," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    2. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    3. Kai He & Nan Zhu & Wu Jiang & Chuanjin Zhu, 2022. "Efficiency Evaluation of Chinese Provincial Industrial System Based on Network DEA Method," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    4. Zhang, Lin & Zhao, Linlin & Zha, Yong, 2021. "Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    5. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    6. Lin, Boqiang & Zhou, Yicheng, 2021. "How does vertical fiscal imbalance affect the upgrading of industrial structure? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    7. Jie Zhang & Zhencheng Xing & Jigan Wang, 2016. "Analysis of CO 2 Emission Performance and Abatement Potential for Municipal Industrial Sectors in Jiangsu, China," Sustainability, MDPI, vol. 8(7), pages 1-15, July.
    8. Wang, Qian & Ren, Shuming, 2022. "Evaluation of green technology innovation efficiency in a regional context: A dynamic network slacks-based measuring approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    9. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    10. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    11. Yuan, Huaxi & Feng, Yidai & Lee, Chien-Chiang & Cen, Yan, 2020. "How does manufacturing agglomeration affect green economic efficiency?," Energy Economics, Elsevier, vol. 92(C).
    12. Zhang, Anming & Zhang, Yahua, 2021. "Is it time for an integrated aviation market in Northeast Asia? An airline performance perspective," Transport Policy, Elsevier, vol. 110(C), pages 161-169.
    13. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    14. Zhang, Chuanguo & Zhao, Wei, 2014. "Panel estimation for income inequality and CO2 emissions: A regional analysis in China," Applied Energy, Elsevier, vol. 136(C), pages 382-392.
    15. Sheng-Hsiung Chiu & Tzu-Yu Lin & Hai-Lan Yang, 2020. "Measuring Energy Performance for Regional Sustainable Development in China: A New Framework based on a Dynamic Two-Stage SBM Approach," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    16. Liang-han Ma & Jin-chi Hsieh & Yung-ho Chiu, 2019. "A Study on the Effects of Energy and Environmental Efficiency at China’s Provincial Level," Energies, MDPI, vol. 12(4), pages 1-13, February.
    17. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
    18. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    19. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    20. Yu, Shiwei & Liu, Jie & Hu, Xing & Tian, Peng, 2022. "Does development of renewable energy reduce energy intensity? Evidence from 82 countries," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307182. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.