IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v182y2022ics0040162522003602.html
   My bibliography  Save this article

Evaluation of green technology innovation efficiency in a regional context: A dynamic network slacks-based measuring approach

Author

Listed:
  • Wang, Qian
  • Ren, Shuming

Abstract

As green technology innovation efficiency is considered an effective indicator to evaluate energy conservation and emission mitigation, the question of how to estimate it has become a hot topic. Research primarily calculates the cross-section efficiency from a static perspective or the network efficiency alone; however, few studies have considered dynamic characteristics and the network structure of the innovation process simultaneously. To address this gap, this paper employs slacks-based dynamic network data envelopment analysis to calculate the overall, intertemporal, and divisional green technology innovation efficiency covering China's 30 provinces over 2012–2019. The results indicate that (1) a strong spatial dependence of efficiency scores exists, accounting for 60 % of the aggregate statistics. (2) China's overall scores are low, and inefficient regions need to improve efficiency by at least 31.41 % to become efficient. (3) Economically developed regions, provinces with advanced manufacturing, and nonresource-based areas have relatively high scores. (4) The period scores fluctuate greatly up and down around the overall scores, showing a significant spatial imbalance within consecutive multiple periods. (5) Regarding divisional scores, the internal structure of green technology innovation efficiency in China is inferior in R&D and superior in commercialization. Generally, policy-makers should improve local conditions for green technology innovation efficiency.

Suggested Citation

  • Wang, Qian & Ren, Shuming, 2022. "Evaluation of green technology innovation efficiency in a regional context: A dynamic network slacks-based measuring approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:tefoso:v:182:y:2022:i:c:s0040162522003602
    DOI: 10.1016/j.techfore.2022.121836
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522003602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lach, Saul & Schankerman, Mark, 1989. "Dynamics of R&D and Investment in the Scientific Sector," Journal of Political Economy, University of Chicago Press, vol. 97(4), pages 880-904, August.
    2. Zhu, Bangzhu & Zhang, Mengfan & Zhou, Yanhua & Wang, Ping & Sheng, Jichuan & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach," Energy Policy, Elsevier, vol. 134(C).
    3. Zeng, Juying & Škare, Marinko & Lafont, Juan, 2021. "The co-integration identification of green innovation efficiency in Yangtze River Delta region," Journal of Business Research, Elsevier, vol. 134(C), pages 252-262.
    4. Zhu, Lin & Luo, Jian & Dong, Qingli & Zhao, Yang & Wang, Yunyue & Wang, Yong, 2021. "Green technology innovation efficiency of energy-intensive industries in China from the perspective of shared resources: Dynamic change and improvement path," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    5. Wang, Ya & Pan, Jiao-feng & Pei, Rui-min & Yi, Bo-Wen & Yang, Guo-liang, 2020. "Assessing the technological innovation efficiency of China's high-tech industries with a two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    6. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    7. Cheng, Ya & Awan, Usama & Ahmad, Shabbir & Tan, Zhixiong, 2021. "How do technological innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    8. Wang, Qunwei & Hang, Ye & Sun, Licheng & Zhao, Zengyao, 2016. "Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 254-261.
    9. Olfat, Laya & Amiri, Maghsoud & Bamdad Soufi, Jahanyar & Pishdar, Mahsa, 2016. "A dynamic network efficiency measurement of airports performance considering sustainable development concept: A fuzzy dynamic network-DEA approach," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 272-290.
    10. Liyuan Zhang & Xiang Ma & Young-Seok Ock & Lingli Qing, 2022. "Research on Regional Differences and Influencing Factors of Chinese Industrial Green Technology Innovation Efficiency Based on Dagum Gini Coefficient Decomposition," Land, MDPI, vol. 11(1), pages 1-20, January.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Yang, Zhenbing & Shao, Shuai & Fan, Meiting & Yang, Lili, 2021. "Wage distortion and green technological progress: A directed technological progress perspective," Ecological Economics, Elsevier, vol. 181(C).
    13. Chen, Kaihua & Kou, Mingting & Fu, Xiaolan, 2018. "Evaluation of multi-period regional R&D efficiency: An application of dynamic DEA to China's regional R&D systems," Omega, Elsevier, vol. 74(C), pages 103-114.
    14. Chang, Tsung-Sheng & Tone, Kaoru & Wu, Chen-Hui, 2021. "Nested dynamic network data envelopment analysis models with infinitely many decision making units for portfolio evaluation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 766-781.
    15. Ungkyu Han & Mette Asmild & Martin Kunc, 2016. "Regional R&D Efficiency in Korea from Static and Dynamic Perspectives," Regional Studies, Taylor & Francis Journals, vol. 50(7), pages 1170-1184, July.
    16. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    17. Wang, Ning & Hagedoorn, John, 2014. "The lag structure of the relationship between patenting and internal R&D revisited," Research Policy, Elsevier, vol. 43(8), pages 1275-1285.
    18. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    19. Adnan, Nadia & Nordin, Shahrina Md & bin Abu Bakar, Zulqarnain, 2017. "Understanding and facilitating sustainable agricultural practice: A comprehensive analysis of adoption behaviour among Malaysian paddy farmers," Land Use Policy, Elsevier, vol. 68(C), pages 372-382.
    20. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    21. Min, Sujin & Kim, Juseong & Sawng, Yeong-Wha, 2020. "The effect of innovation network size and public R&D investment on regional innovation efficiency," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    22. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    23. Yang, Haochang & Li, Lianshui & Liu, Yaobin, 2022. "The effect of manufacturing intelligence on green innovation performance in China," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    24. Michael Fritsch & Viktor Slavtchev, 2011. "Determinants of the Efficiency of Regional Innovation Systems," Regional Studies, Taylor & Francis Journals, vol. 45(7), pages 905-918.
    25. Adnan, Nadia & Nordin, Shahrina Md & Ali, Murad, 2018. "A solution for the sunset industry: Adoption of Green Fertiliser Technology amongst Malaysian paddy farmers," Land Use Policy, Elsevier, vol. 79(C), pages 575-584.
    26. Adnan, Nadia & Md Nordin, Shahrina & Hadi Amini, M. & Langove, Naseebullah, 2018. "What make consumer sign up to PHEVs? Predicting Malaysian consumer behavior in adoption of PHEVs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 259-278.
    27. Lv, Chengchao & Shao, Changhua & Lee, Chien-Chiang, 2021. "Green technology innovation and financial development: Do environmental regulation and innovation output matter?," Energy Economics, Elsevier, vol. 98(C).
    28. Zhao, Nan & Liu, Xiaojie & Pan, Changfeng & Wang, Chenyang, 2021. "The performance of green innovation: From an efficiency perspective," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    29. Xie, Luqun & Zhou, Jieyu & Zong, Qingqing & Lu, Qian, 2020. "Gender diversity in R&D teams and innovation efficiency: Role of the innovation context," Research Policy, Elsevier, vol. 49(1).
    30. Ming Yi & Yiqian Wang & Modan Yan & Lina Fu & Yao Zhang, 2020. "Government R&D Subsidies, Environmental Regulations, and Their Effect on Green Innovation Efficiency of Manufacturing Industry: Evidence from the Yangtze River Economic Belt of China," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
    31. Feng Wu & Xiaopeng Fu & Ting Zhang & Dan Wu & Stavros Sindakis, 2022. "Examining Whether Government Environmental Regulation Promotes Green Innovation Efficiency—Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    32. Usama Awan & Marlen Gabriele Arnold & Ismail Gölgeci, 2021. "Enhancing green product and process innovation: Towards an integrative framework of knowledge acquisition and environmental investment," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1283-1295, February.
    33. Humaira Yasmeen & Qingmei Tan & Hashim Zameer & Junlan Tan & Kishwar Nawaz, 2020. "Exploring the impact of technological innovation, environmental regulations and urbanization on ecological efficiency of China in the context of COP21," Post-Print hal-03558085, HAL.
    34. Rajiv D. Banker & Ram Natarajan, 2008. "Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis," Operations Research, INFORMS, vol. 56(1), pages 48-58, February.
    35. Yu, Hang & Zhang, Yahua & Zhang, Anming & Wang, Kun & Cui, Qiang, 2019. "A comparative study of airline efficiency in China and India: A dynamic network DEA approach," Research in Transportation Economics, Elsevier, vol. 76(C).
    36. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    37. Li, Xibao, 2009. "China's regional innovation capacity in transition: An empirical approach," Research Policy, Elsevier, vol. 38(2), pages 338-357, March.
    38. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    39. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Zhiying & Chen, Jian & Jiang, Dayang & Sun, Yunpeng, 2022. "Assessment of the spatial association network of green innovation: Role of energy resources in green recovery," Resources Policy, Elsevier, vol. 79(C).
    2. Lihui Chen & Qiqi Xiao & Jianlin Wang & Zhong Fang, 2023. "Research on Dynamic Evolutionary Efficiency and Regional Differentiation of High-Tech Industrial Chain Networks," Sustainability, MDPI, vol. 15(24), pages 1-23, December.
    3. Luo, Yusen & Lu, Zhengnan & Wu, Chao, 2023. "Can internet development accelerate the green innovation efficiency convergence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    4. Xu Dong & Wensi Fu & Yali Yang & Chenguang Liu & Guizhi Xue, 2022. "Study on the Evaluation of Green Technology Innovation Efficiency and Its Influencing Factors in the Central Plains City Cluster of China," Sustainability, MDPI, vol. 14(17), pages 1-24, September.
    5. Li, Kanyong, 2023. "Can resource endowment and industrial structure drive green innovation efficiency in the context of COP 26?," Resources Policy, Elsevier, vol. 82(C).
    6. Zi Ye & Chen Zou & Yongchun Huang, 2022. "Impact of Heterogeneous Spatial Structure on Regional Innovation—From the Perspectives of Efficiency and Gap," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    7. Santos-Arteaga, Francisco J. & Di Caprio, Debora & Tavana, Madjid, 2023. "A combinatorial data envelopment analysis with uncertain interval data with application to ICT evaluation," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    8. Zhicheng Duan & Tingting Tang, 2022. "Quantitative Simulation and Verification of the Coordination Curves between Sustainable Development and Green Innovation Efficiency: From the Perspective of Urban Agglomerations Development," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    9. Guangming Yang & Siyi Cheng & Qingqing Gui & Xinlan Chen, 2022. "The Coupling and Coordination Characteristics and Influencing Factors of Green Innovation Efficiency (GIE) and Economic Development Levels in China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Kaihua & Kou, Mingting & Fu, Xiaolan, 2018. "Evaluation of multi-period regional R&D efficiency: An application of dynamic DEA to China's regional R&D systems," Omega, Elsevier, vol. 74(C), pages 103-114.
    2. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    3. Liwen Sun & Ying Han, 2022. "Spatial Correlation Network Structure and Influencing Factors of Two-Stage Green Innovation Efficiency: Evidence from China," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    4. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    5. Bresciani, Stefano & Puertas, Rosa & Ferraris, Alberto & Santoro, Gabriele, 2021. "Innovation, environmental sustainability and economic development: DEA-Bootstrap and multilevel analysis to compare two regions," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    6. Kai Xu & Bart Bossink & Qiang Chen, 2019. "Efficiency Evaluation of Regional Sustainable Innovation in China: A Slack-Based Measure (SBM) Model with Undesirable Outputs," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    7. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    8. Zhong, Meirui & Huang, Gangli & He, Ruifang, 2022. "The technological innovation efficiency of China's lithium-ion battery listed enterprises: Evidence from a three-stage DEA model and micro-data," Energy, Elsevier, vol. 246(C).
    9. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    10. Huang, Shwu-Huei & Yu, Ming-Miin & Huang, Ya-Ling, 2022. "Evaluation of the efficiency of the local tax administration in Taiwan: Application of a dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    11. Adler, Nicole & Liebert, Vanessa, 2014. "Joint impact of competition, ownership form and economic regulation on airport performance and pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 92-109.
    12. Lin, Tzu-Yu & Chiu, Sheng-Hsiung & Yang, Hai-Lan, 2022. "Performance evaluation for regional innovation systems development in China based on the two-stage SBM-DNDEA model," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    13. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    14. Jaeho Shin & Changhee Kim & Hongsuk Yang, 2018. "The Effect of Sustainability as Innovation Objectives on Innovation Efficiency," Sustainability, MDPI, vol. 10(6), pages 1-13, June.
    15. Puertas, Rosa & Marti, Luisa & Guaita-Martinez, José M., 2020. "Innovation, lifestyle, policy and socioeconomic factors: An analysis of European quality of life," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    16. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    17. Chen, Kaihua, 2014. "Measuring and decomposing the overall efficiency of multi-period and -division systems associated with DEA," MPRA Paper 55073, University Library of Munich, Germany.
    18. Yunyao Li & Yanji Ma, 2022. "Research on Industrial Innovation Efficiency and the Influencing Factors of the Old Industrial Base Based on the Lock-In Effect, a Case Study of Jilin Province, China," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
    19. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    20. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:182:y:2022:i:c:s0040162522003602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.