IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i2p463-471.html
   My bibliography  Save this article

Accounting for slacks to measure dynamic inefficiency in data envelopment analysis

Author

Listed:
  • Aparicio, Juan
  • Kapelko, Magdalena

Abstract

Slacks that arise when nonparametrically constructing technologies are relevant because they can be an important source of technical inefficiency. This paper extends the measurement of dynamic inefficiency in the full input–output space in the adjustment-cost theory framework to account for slacks. In particular, the paper develops the dynamic weighted additive model in Data Envelopment Analysis (DEA) and shows its main properties. Additionally, the approach is illustrated by a real application. The empirical application concerns data on large firms in the dairy-manufacturing industry in the main dairy-producing countries in the European Union (France, Germany, Italy, Spain, Poland, and the Czech Republic) from 2005 to 2012. The results show the differences in average dynamic inefficiency between the analyzed countries. The findings also indicate that, not surprisingly, firms are, on average, closer to their own-country frontier than the common frontier comprising all firms, regardless of country. Greater inefficiency was also found, on average, in the new approach when related to the dynamic framework that does not account for slacks.

Suggested Citation

  • Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:463-471
    DOI: 10.1016/j.ejor.2018.08.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718307409
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeideh Fallah-Fini & Konstantinos Triantis & Andrew Johnson, 2014. "Reviewing the literature on non-parametric dynamic efficiency measurement: state-of-the-art," Journal of Productivity Analysis, Springer, vol. 41(1), pages 51-67, February.
    2. Stefanou, Spiro E. & Silva, Elvira, 2007. "AJAE Appendix: Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 89(2), pages 1-19, May.
    3. Kapelko, Magdalena & Oude Lansink, Alfons & Stefanou, Spiro E., 2014. "Assessing dynamic inefficiency of the Spanish construction sector pre- and post-financial crisis," European Journal of Operational Research, Elsevier, vol. 237(1), pages 349-357.
    4. Treadway, Arthur B., 1970. "Adjustment costs and variable inputs in the theory of the competitive firm," Journal of Economic Theory, Elsevier, vol. 2(4), pages 329-347, December.
    5. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2017. "Input-Specific Dynamic Productivity Change: Measurement and Application to European Dairy Manufacturing Firms," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 579-599, June.
    6. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2005. "Returns to scale in dynamic DEA," European Journal of Operational Research, Elsevier, vol. 161(2), pages 536-544, March.
    7. Avkiran, Necmi K., 2009. "Opening the black box of efficiency analysis: An illustration with UAE banks," Omega, Elsevier, vol. 37(4), pages 930-941, August.
    8. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    9. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    10. Magdalena Kapelko, 2017. "Dynamic versus static inefficiency assessment of the Polish meat‐processing industry in the aftermath of the European Union integration and financial crisis," Agribusiness, John Wiley & Sons, Ltd., vol. 33(4), pages 505-521, September.
    11. Rungsuriyawiboon, Supawat & Stefanou, Spiro E., 2007. "Dynamic Efficiency Estimation: An Application to U.S. Electric Utilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 226-238, April.
    12. Ang, Frederic & Oude Lansink, Alfons, 2014. "Dynamic profit inefficiency: a DEA application to Belgian dairy farms," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182649, European Association of Agricultural Economists.
    13. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    14. Elvira Silva & Spiro E. Stefanou, 2007. "Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 398-419.
    15. Silva, Elvira & Lansink, Alfons Oude & Stefanou, Spiro E., 2015. "The adjustment-cost model of the firm: Duality and productive efficiency," International Journal of Production Economics, Elsevier, vol. 168(C), pages 245-256.
    16. Léopold Simar, 2003. "Detecting Outliers in Frontier Models: A Simple Approach," Journal of Productivity Analysis, Springer, vol. 20(3), pages 391-424, November.
    17. McLaren, Keith R & Cooper, Russel J, 1980. "Intertemporal Duality: Application to the Theory of the Firm," Econometrica, Econometric Society, vol. 48(7), pages 1755-1762, November.
    18. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    19. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    20. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    21. Chen, Chien-Ming, 2009. "A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks," European Journal of Operational Research, Elsevier, vol. 194(3), pages 687-699, May.
    22. Jiro Nemoto & Mika Goto, 2003. "Measurement of Dynamic Efficiency in Production: An Application of Data Envelopment Analysis to Japanese Electric Utilities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 191-210, April.
    23. Skevas, Theodoros & Lansink, Alfons Oude & Stefanou, Spiro E., 2012. "Measuring technical efficiency in the presence of pesticide spillovers and production uncertainty: The case of Dutch arable farms," European Journal of Operational Research, Elsevier, vol. 223(2), pages 550-559.
    24. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    25. Elvira Silva & Spiro Stefanou, 2003. "Nonparametric Dynamic Production Analysis and the Theory of Cost," Journal of Productivity Analysis, Springer, vol. 19(1), pages 5-32, January.
    26. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    27. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    28. Larry G. Epstein, 1981. "Duality Theory and Functional Forms for Dynamic Factor Demands," Review of Economic Studies, Oxford University Press, vol. 48(1), pages 81-95.
    29. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    30. Nemoto, Jiro & Goto, Mika, 1999. "Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies," Economics Letters, Elsevier, vol. 64(1), pages 51-56, July.
    31. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    32. Filadelfo Mateo & Tim Coelli & Chris O'Donnell, 2006. "Optimal Paths And Costs Of Adjustment In Dynamic DEA Models: With Application To Chilean Department Stores," Annals of Operations Research, Springer, vol. 145(1), pages 211-227, July.
    33. William Cooper & Jesús Pastor & Fernando Borras & Juan Aparicio & Diego Pastor, 2011. "BAM: a bounded adjusted measure of efficiency for use with bounded additive models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 85-94, April.
    34. Aparicio, Juan & Pastor, Jesus T. & Vidal, Fernando, 2016. "The directional distance function and the translation invariance property," Omega, Elsevier, vol. 58(C), pages 1-3.
    35. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    36. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    37. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:463-471. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.