IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4899-7553-9_8.html
   My bibliography  Save this book chapter

Translation Invariance in Data Envelopment Analysis

In: Data Envelopment Analysis

Author

Listed:
  • Jesus T. Pastor

    (University Miguel Hernandez of Elche)

  • Juan Aparicio

    (University Miguel Hernandez of Elche)

Abstract

In this chapter we present an overview of the different approaches that have considered translation invariant Data Envelopment Analysis (DEA) models. Translation invariance is a relevant property for dealing with non-positive input and/or non-positive output values. We start by considering the classical approach and continue revising recent contributions. We also consider non-translation invariant DEA models that are able to deal with negative data at the expense of modifying the model itself. Finally, we propose to study translation invariance in a general framework through a recently introduced distance function: the linear loss distance function.

Suggested Citation

  • Jesus T. Pastor & Juan Aparicio, 2015. "Translation Invariance in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 8, pages 245-268, Springer.
  • Handle: RePEc:spr:isochp:978-1-4899-7553-9_8
    DOI: 10.1007/978-1-4899-7553-9_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    2. Hainan Guo & Yang Zhao & Tie Niu & Kwok-Leung Tsui, 2017. "Hong Kong Hospital Authority resource efficiency evaluation: Via a novel DEA-Malmquist model and Tobit regression model," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-24, September.
    3. Henriques, C.O. & Chavez, J.M. & Gouveia, M.C. & Marcenaro-Gutierrez, O.D., 2022. "Efficiency of secondary schools in Ecuador: A value based DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    4. Michalis Doumpos & Alexis Guyot & Emilios Galariotis & Constantin Zopounidis, 2020. "Assessing the quality of life in French municipalities: a multidimensional approach," Annals of Operations Research, Springer, vol. 293(2), pages 789-808, October.
    5. Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
    6. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    7. Cova-Alonso, David José & Díaz-Hernández, Juan José & Martínez-Budría, Eduardo, 2021. "A strong efficiency measure for CCR/BCC models," European Journal of Operational Research, Elsevier, vol. 291(1), pages 284-295.
    8. Aparicio, Juan & Kapelko, Magdalena & Ortiz, Lidia, 2023. "Enhancing the measurement of firm inefficiency accounting for corporate social responsibility: A dynamic data envelopment analysis fuzzy approach," European Journal of Operational Research, Elsevier, vol. 306(2), pages 986-997.
    9. Tone, Kaoru & Chang, Tsung-Sheng & Wu, Chen-Hui, 2020. "Handling negative data in slacks-based measure data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 926-935.
    10. Pooja Bansal & Aparna Mehra, 2018. "Multi-period additive efficiency measurement in data envelopment analysis with non-positive and undesirable data," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 642-661, November.
    11. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).
    12. Aparicio, Juan & Monge, Juan F., 2022. "The generalized range adjusted measure in data envelopment analysis: Properties, computational aspects and duality," European Journal of Operational Research, Elsevier, vol. 302(2), pages 621-632.
    13. Juan Aparicio & Magdalena Kapelko, 2019. "Enhancing the Measurement of Composite Indicators of Corporate Social Performance," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 807-826, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4899-7553-9_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.