IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v282y2020i3p926-935.html
   My bibliography  Save this article

Handling negative data in slacks-based measure data envelopment analysis models

Author

Listed:
  • Tone, Kaoru
  • Chang, Tsung-Sheng
  • Wu, Chen-Hui

Abstract

This paper proposes slacks-based measure (SBM) data envelopment analysis (DEA) models that handle negative data. Unlike existing negative data allowable DEA models, the proposed SBM DEA models are consistent with ordinary SBM models and units invariant, they handle various types of returns to scale, and they avoid division by zero. These new SBM DEA models transform original negative inputs and outputs into positive counterparts based on a newly defined “base point”. Hence, these models are referred to as the BP-SBM DEA models. In addition to the basic BP-SBM DEA models, this research further develops data-oriented and application-oriented BP-SBM DEA-type models for different application problems involving negative data. Numerical examples are provided to illustrate various aspects and implementation details of these models.

Suggested Citation

  • Tone, Kaoru & Chang, Tsung-Sheng & Wu, Chen-Hui, 2020. "Handling negative data in slacks-based measure data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 926-935.
  • Handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:926-935
    DOI: 10.1016/j.ejor.2019.09.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719308124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.09.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. M C A Silva Portela & E Thanassoulis & G Simpson, 2004. "Negative data in DEA: a directional distance approach applied to bank branches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1111-1121, October.
    2. Jesus T. Pastor & Juan Aparicio, 2015. "Translation Invariance in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 8, pages 245-268, Springer.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Ando, Kazutoshi & Minamide, Masato & Sekitani, Kazuyuki & Shi, Jianming, 2017. "Monotonicity of minimum distance inefficiency measures for Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 260(1), pages 232-243.
    5. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    6. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    7. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    8. Cheng, Gang & Zervopoulos, Panagiotis & Qian, Zhenhua, 2013. "A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 225(1), pages 100-105.
    9. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    10. Ruiyue Lin & Zhiping Chen, 2017. "A directional distance based super-efficiency DEA model handling negative data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1312-1322, November.
    11. J A Sharp & W Meng & W Liu, 2007. "A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative outputs and inputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1672-1677, December.
    12. Fukuyama, Hirofumi & Maeda, Yasunobu & Sekitani, Kazuyuki & Shi, Jianming, 2014. "Input–output substitutability and strongly monotonic p-norm least distance DEA measures," European Journal of Operational Research, Elsevier, vol. 237(3), pages 997-1007.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).
    2. Lin, Shuguang & Shi, Hai-Liu & Wang, Ying-Ming, 2022. "An integrated slacks-based super-efficiency measure in the presence of nonpositive data," Omega, Elsevier, vol. 111(C).
    3. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    4. Lin, Ruiyue & Liu, Yue, 2019. "Super-efficiency based on the directional distance function in the presence of negative data," Omega, Elsevier, vol. 85(C), pages 26-34.
    5. Lee, Hsuan-Shih, 2025. "Variable range measure: A new range measure for super-efficiency model based on DDF in presence of nonpositive data," Omega, Elsevier, vol. 134(C).
    6. Aparicio, Juan & Pastor, Jesus T. & Vidal, Fernando, 2016. "The directional distance function and the translation invariance property," Omega, Elsevier, vol. 58(C), pages 1-3.
    7. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    8. Cova-Alonso, David José & Díaz-Hernández, Juan José & Martínez-Budría, Eduardo, 2021. "A strong efficiency measure for CCR/BCC models," European Journal of Operational Research, Elsevier, vol. 291(1), pages 284-295.
    9. Lee, Hsuan-Shih, 2021. "Slacks-based measures of efficiency and super-efficiency in presence of nonpositive data," Omega, Elsevier, vol. 103(C).
    10. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    11. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    12. Amineh Ghazi & Farhad Hosseinzadeh Lotfi & Masoud Sanei, 2020. "Hybrid efficiency measurement and target setting based on identifying defining hyperplanes of the PPS with negative data," Operational Research, Springer, vol. 20(2), pages 1055-1092, June.
    13. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    14. Andrey V. Lychev & Svetlana V. Ratner & Vladimir E. Krivonozhko, 2023. "Two-Stage Data Envelopment Analysis Models with Negative System Outputs for the Efficiency Evaluation of Government Financial Policies," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
    15. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
    16. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    17. Mohammad Izadikhah & Reza Farzipoor Saen & Razieh Roostaee, 2018. "How to assess sustainability of suppliers in the presence of volume discount and negative data in data envelopment analysis?," Annals of Operations Research, Springer, vol. 269(1), pages 241-267, October.
    18. Youchao Tan & Udaya Shetty & Ali Diabat & T. Pakkala, 2015. "Aggregate directional distance formulation of DEA with integer variables," Annals of Operations Research, Springer, vol. 235(1), pages 741-756, December.
    19. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    20. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:282:y:2020:i:3:p:926-935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.