IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis

  • Cheng, Gang
  • Zervopoulos, Panagiotis
  • Qian, Zhenhua

Data envelopment analysis (DEA) is a linear programming methodology to evaluate the relative technical efficiency for each member of a set of peer decision making units (DMUs) with multiple inputs and multiple outputs. It has been widely used to measure performance in many areas. A weakness of the traditional DEA model is that it cannot deal with negative input or output values. There have been many studies exploring this issue, and various approaches have been proposed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0377221712007102
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal European Journal of Operational Research.

Volume (Year): 225 (2013)
Issue (Month): 1 ()
Pages: 100-105

as
in new window

Handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:100-105
Contact details of provider: Web page: http://www.elsevier.com/locate/eor

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Edirisinghe, N.C.P. & Zhang, X., 2007. "Generalized DEA model of fundamental analysis and its application to portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3311-3335, November.
  2. Portela, Maria Conceicao A. Silva & Thanassoulis, Emmanuel, 2007. "Comparative efficiency analysis of Portuguese bank branches," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1275-1288, March.
  3. Shawna Grosskopf & Kathy J. Hayes & Lori L. Taylor & William L. Weber, 1999. "Anticipating the Consequences of School Reform: A New Use of DEA," Management Science, INFORMS, vol. 45(4), pages 608-620, April.
  4. Emrouznejad, Ali & Amin, Gholam R. & Thanassoulis, Emmanuel & Anouze, Abdel Latef, 2010. "On the boundedness of the SORM DEA models with negative data," European Journal of Operational Research, Elsevier, vol. 206(1), pages 265-268, October.
  5. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
  6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  7. Emrouznejad, Ali & Anouze, Abdel Latef & Thanassoulis, Emmanuel, 2010. "A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA," European Journal of Operational Research, Elsevier, vol. 200(1), pages 297-304, January.
  8. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
  9. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
  10. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
  11. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
  12. Lamb, John D. & Tee, Kai-Hong, 2012. "Data envelopment analysis models of investment funds," European Journal of Operational Research, Elsevier, vol. 216(3), pages 687-696.
  13. Muliaman D. Hadad & Maximilian J. B. Hall & Wimboh Santoso & Karligash Kenjegalieva & Richard Simper, 2009. "A New Approach to Dealing With Negative Numbers in Efficiency Analysis: An Application to the Indonesian Banking Sector," Discussion Paper Series 2009_20, Department of Economics, Loughborough University, revised Dec 2009.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:100-105. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.