IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v153y2018icp338-348.html
   My bibliography  Save this article

Energy-environmental efficiency and optimal restructuring of the global economy

Author

Listed:
  • Vaninsky, Alexander

Abstract

The primary objective of this study is to investigate the opportunities for economic restructuring, resulting in an optimal increase in the energy-environmental efficiency of the global economy. A novel stochastic data envelopment analysis with a perfect object method (SDEA PO) constitutes the methodology of the research. We equip SDEA PO with the projected gradient of the efficiency score. We employ the indicators of the gross domestic product (GDP) and carbon dioxide emissions (CO2) as output and undesirable output, respectively, and population and clean energy consumption as input and undesirable input, respectively. By using the SDEA PO, we obtain a group efficiency score for the global economy; the projected gradient identifies the direction of optimal economic restructuring. The indicator-wise components of the projected gradient determine locally optimal changes in the shares of each economy, serving particular goals. We use a factor analysis technique to aggregate them into one factor vector that determines the multicriteria optimal structural change. The factor vector determines the redistribution of the GDP, clean energy consumption, CO2 emissions, and population, leading to the maximum possible increase in the energy-environmental efficiency. The suggested approach may be used as a tool for decision-making in a variety of two-tier economic systems.

Suggested Citation

  • Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
  • Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:338-348
    DOI: 10.1016/j.energy.2018.03.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Jati Sengupta, 2000. "Efficiency analysis by stochastic data envelopment analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 7(6), pages 379-383.
    3. de la Rue du Can, Stephane & Price, Lynn & Zwickel, Timm, 2015. "Understanding the full climate change impact of energy consumption and mitigation at the end-use level: A proposed methodology for allocating indirect carbon dioxide emissions," Applied Energy, Elsevier, vol. 159(C), pages 548-559.
    4. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    5. Wade D. Cook & Joe Zhu, 2006. "Incorporating Multiprocess Performance Standards into the DEA Framework," Operations Research, INFORMS, vol. 54(4), pages 656-665, August.
    6. Royo, Patricia & Ferreira, Víctor José & López-Sabirón, Ana M. & García-Armingol, Tatiana & Ferreira, Germán, 2018. "Retrofitting strategies for improving the energy and environmental efficiency in industrial furnaces: A case study in the aluminium sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1813-1822.
    7. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    8. Jesus T. Pastor & Juan Aparicio, 2015. "Translation Invariance in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 8, pages 245-268, Springer.
    9. Shivananda Shetty & Surender Kumar, 2017. "Are voluntary environment programs effective in improving the environmental performance: evidence from polluting Indian Industries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(4), pages 659-676, October.
    10. Thanassoulis, E. & Dyson, R. G., 1992. "Estimating preferred target input-output levels using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 56(1), pages 80-97, January.
    11. Huang, Zhimin & Li, Susan X., 1996. "Dominance stochastic models in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 95(2), pages 390-403, December.
    12. Thore, Sten, 1987. "Chance-constrained activity analysis," European Journal of Operational Research, Elsevier, vol. 30(3), pages 267-269, June.
    13. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    14. Jati K. Sengupta, 2000. "Stochastic Efficiency Analysis," World Scientific Book Chapters, in: Dynamic And Stochastic Efficiency Analysis Economics of Data Envelopment Analysis, chapter 4, pages 97-128, World Scientific Publishing Co. Pte. Ltd..
    15. Toshiyuki Sueyoshi & Mika Goto, 2017. "World trend in energy: an extension to DEA applied to energy and environment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-23, December.
    16. Chang, Juin-Jen & Wang, Wei-Neng & Shieh, Jhy-Yuan, 2018. "Environmental rebounds/backfires: Macroeconomic implications for the promotion of environmentally-friendly products," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 35-68.
    17. Dieter Gstach, 1998. "Another Approach to Data Envelopment Analysis in Noisy Environments: DEA+," Journal of Productivity Analysis, Springer, vol. 9(2), pages 161-176, March.
    18. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    19. Zuoxiang Zhao, 2017. "Measurement of production efficiency and environmental efficiency in China’s province-level: a by-production approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(4), pages 735-759, October.
    20. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    21. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    22. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
    23. Jati K Sengupta, 2000. "Dynamic and Stochastic Efficiency Analysis:Economics of Data Envelopment Analysis," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4385, June.
    24. Yanni Yu & Yongrok Choi, 2015. "Measuring Environmental Performance Under Regional Heterogeneity in China: A Metafrontier Efficiency Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 375-388, October.
    25. William W. Cooper & Kyung Sam Park & Gang Yu, 1999. "IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA," Management Science, INFORMS, vol. 45(4), pages 597-607, April.
    26. Kao, Chiang, 2006. "Interval efficiency measures in data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1087-1099, October.
    27. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    28. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    29. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    30. Shogo Eguchi, 2017. "Accounting for resource accumulation in Japanese prefectures: an environmental efficiency analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-22, December.
    31. W W Cooper & H Deng & Z Huang & S X Li, 2002. "Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1347-1356, December.
    32. Despotis, Dimitris K. & Smirlis, Yiannis G., 2002. "Data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 140(1), pages 24-36, July.
    33. Oliviero A. Carboni & Paolo Russu, 2018. "Measuring and forecasting regional environmental and economic efficiency in Italy," Applied Economics, Taylor & Francis Journals, vol. 50(4), pages 335-353, January.
    34. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    35. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, November.
    36. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    37. Maital, Shlomo & Vaninsky, Alexander, 1999. "Data envelopment analysis with a single DMU: A graphic projected-gradient approach," European Journal of Operational Research, Elsevier, vol. 115(3), pages 518-528, June.
    38. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Janicka & Artur Sajnóg, 2023. "Do environmental and economic performance go hand in hand? An industrial analysis of European Union companies with the non‐parametric data envelopment analysis method," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2590-2605, September.
    2. Wang, Ying & Deng, Xiangzheng & Zhang, Hongwei & Liu, Yujie & Yue, Tianxiang & Liu, Gang, 2022. "Energy endowment, environmental regulation, and energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. Anatolyy Dzyuba & Irina Solovyeva, 2020. "Demand-side Management in Territorial Entities based on their Volatility Trends," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 302-315.
    4. Jianqing Zhang & Song Wang & Peilei Yang & Fei Fan & Xueli Wang, 2020. "Analysis of Scale Factors on China’s Sustainable Development Efficiency Based on Three-Stage DEA and a Double Threshold Test," Sustainability, MDPI, vol. 12(6), pages 1-26, March.
    5. Jing Bian & Feng Lan & Zhao Hui & Jiamin Bai & Yuanping Wang, 2022. "Ecological Well-Being Performance Evaluation of Chinese Major Node Cities along the Belt and Road," Land, MDPI, vol. 11(11), pages 1-19, October.
    6. Roman Lacko & Zuzana Hajduová, 2018. "Determinants of Environmental Efficiency of the EU Countries Using Two-Step DEA Approach," Sustainability, MDPI, vol. 10(10), pages 1-13, September.
    7. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    8. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
    9. Sun, Huaping & Kporsu, Anthony Kwaku & Taghizadeh-Hesary, Farhad & Edziah, Bless Kofi, 2020. "Estimating environmental efficiency and convergence: 1980 to 2016," Energy, Elsevier, vol. 208(C).
    10. Yu Hao & Yunxia Guo & Haitao Wu, 2022. "The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 403-424, January.
    11. Li, Ye & Cui, Qiang, 2018. "Investigating the role of cooperation in the GHG abatement costs of airlines under CNG2020 strategy via a DEA cross PAC model," Energy, Elsevier, vol. 161(C), pages 725-736.
    12. Singpai, Bodin & Wu, Desheng Dash, 2021. "An integrative approach for evaluating the environmental economic efficiency," Energy, Elsevier, vol. 215(PB).
    13. Zhaoqiang Zhong & Benhong Peng & Ehsan Elahi, 2021. "Spatial and temporal pattern evolution and influencing factors of energy–environmental efficiency: A case study of Yangtze River urban agglomeration in China," Energy & Environment, , vol. 32(2), pages 242-261, March.
    14. Kiani Mavi, Reza & Kiani Mavi, Neda & Farzipoor Saen, Reza & Goh, Mark, 2022. "Common weights analysis of renewable energy efficiency of OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    15. Popkova, Elena G. & Sergi, Bruno S., 2021. "Energy efficiency in leading emerging and developed countries," Energy, Elsevier, vol. 221(C).
    16. Qingxian An & Xiangyang Tao & Bo Dai & Jinlin Li, 2020. "Modified Distance Friction Minimization Model with Undesirable Output: An Application to the Environmental Efficiency of China’s Regional Industry," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1047-1071, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang & Liu, Shiang-Tai, 2009. "Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks," European Journal of Operational Research, Elsevier, vol. 196(1), pages 312-322, July.
    2. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    3. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    4. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    5. Jolly Puri & Shiv Prasad Yadav, 2017. "Improved DEA models in the presence of undesirable outputs and imprecise data: an application to banking industry in India," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1608-1629, November.
    6. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    7. Chiang Kao & Shiang-Tai Liu, 2022. "Stochastic efficiencies of network production systems with correlated stochastic data: the case of Taiwanese commercial banks," Annals of Operations Research, Springer, vol. 315(2), pages 1151-1174, August.
    8. Mohammad Jamshidi & Masoud Sanei & Ali Mahmoodirad & Farhad Hoseinzadeh Lotfi & Ghasem Tohidi, 2021. "Uncertain SBM data envelopment analysis model: A case study in Iranian banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2674-2689, April.
    9. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    10. Park, K. Sam, 2010. "Duality, efficiency computations and interpretations in imprecise DEA," European Journal of Operational Research, Elsevier, vol. 200(1), pages 289-296, January.
    11. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    12. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    13. Tao Xu & Jianxin You & Hui Li & Luning Shao, 2020. "Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review," Energies, MDPI, vol. 13(14), pages 1-20, July.
    14. Bampatsou, Christina & Halkos, George, 2018. "Dynamics of productivity taking into consideration the impact of energy consumption and environmental degradation," Energy Policy, Elsevier, vol. 120(C), pages 276-283.
    15. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    16. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    17. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    18. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    19. Kao, Chiang & Liu, Shiang-Tai, 2019. "Stochastic efficiency measures for production units with correlated data," European Journal of Operational Research, Elsevier, vol. 273(1), pages 278-287.
    20. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:153:y:2018:i:c:p:338-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.