IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036648.html
   My bibliography  Save this article

Characterizing the spatial correlation network structure and impact mechanism of carbon emission efficiency: Evidence from China's transportation sector

Author

Listed:
  • Mao, Yumeng
  • Li, Xuemei
  • Jiao, Dehan
  • Zhao, Xiaolei

Abstract

Numerous countries and regions are actively seeking to reduce carbon emissions through policy guidance and technological innovation. In this process, balancing economic development with environmental protection and achieving synergistic carbon reduction between regions pose challenges for policymakers and the academic community alike. This study analyzes data from 30 provinces in China over the period from 2005 to 2020, employing the SBM-DEA, block model, and the Exponential Random Graph Models (ERGM) to explore the spatial association network structure characteristics of carbon emission efficiency and its driving factors. The findings indicate that: the carbon emission efficiency of the transportation industry is generally on an upward trend, with the eastern region having the highest carbon emission efficiency; the spatial association network exhibits a “dense in the east, sparse in the west” pattern; the block model demonstrates clear inter-regional carbon emission transfer behaviors; the result of ERGM shows that factors such as the level of economic development and population density significantly affect the network structure. The macro-micro individual analysis framework for the carbon emission efficiency network fills the theoretical gap in the context of the digital economy, providing a scientific basis and decision-making reference for policymakers when formulating and optimizing carbon reduction policies, which holds significant theoretical and practical value.

Suggested Citation

  • Mao, Yumeng & Li, Xuemei & Jiao, Dehan & Zhao, Xiaolei, 2024. "Characterizing the spatial correlation network structure and impact mechanism of carbon emission efficiency: Evidence from China's transportation sector," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036648
    DOI: 10.1016/j.energy.2024.133886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Qichuan & Ma, Xuejiao, 2021. "Spillovers of environmental regulation on carbon emissions network," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Wang, Zhenshuang & Xie, Wanchen & Zhang, Chengyi, 2023. "Towards COP26 targets: Characteristics and influencing factors of spatial correlation network structure on U.S. carbon emission," Resources Policy, Elsevier, vol. 81(C).
    3. Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
    4. Zhao, Xiaolei & Li, Xuemei & Jiao, Dehan & Mao, Yumeng & Sun, Jingxiao & Liu, Guanyi, 2024. "Policy incentives and electric vehicle adoption in China: From a perspective of policy mixes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    5. Li, Li & Hong, Xuefei & Peng, Ke, 2019. "A spatial panel analysis of carbon emissions, economic growth and high-technology industry in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 83-92.
    6. Zhao, Pengjun & Zeng, Liangen & Li, Peilin & Lu, Haiyan & Hu, Haoyu & Li, Chengming & Zheng, Mengyuan & Li, Haitao & Yu, Zhao & Yuan, Dandan & Xie, Jinxin & Huang, Qi & Qi, Yuting, 2022. "China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model," Energy, Elsevier, vol. 238(PC).
    7. Gong, Yuanyuan & Sun, Hui & Wang, Zhiwei & Ding, Chenxin, 2023. "Spatial correlation network pattern and evolution mechanism of natural gas consumption in China—Complex network-based ERGM model," Energy, Elsevier, vol. 285(C).
    8. Cheng, Hao & Wu, Boyu & Jiang, Xiaokun, 2024. "Study on the spatial network structure of energy carbon emission efficiency and its driving factors in Chinese cities," Applied Energy, Elsevier, vol. 371(C).
    9. Zhao, Min & Sun, Tao, 2022. "Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China," Energy Policy, Elsevier, vol. 165(C).
    10. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).
    11. Gao, Cuixia & Tao, Simin & He, Yuyang & Su, Bin & Sun, Mei & Mensah, Isaac Adjei, 2021. "Effect of population migration on spatial carbon emission transfers in China," Energy Policy, Elsevier, vol. 156(C).
    12. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    13. Xie, Chunping & Bai, Mengqi & Wang, Xiaolei, 2018. "Accessing provincial energy efficiencies in China’s transport sector," Energy Policy, Elsevier, vol. 123(C), pages 525-532.
    14. Zhang, Yue-Jun & Jiang, Lin & Shi, Wei, 2020. "Exploring the growth-adjusted energy-emission efficiency of transportation industry in China," Energy Economics, Elsevier, vol. 90(C).
    15. Teng, Xiangyu & Liu, Fan-peng & Chiu, Yung-ho, 2021. "The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model," Energy, Elsevier, vol. 216(C).
    16. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    17. Liu, S. & Xiao, Q., 2021. "An empirical analysis on spatial correlation investigation of industrial carbon emissions using SNA-ICE model," Energy, Elsevier, vol. 224(C).
    18. Wang, Longke & Zhang, Ming & Song, Yan, 2024. "Research on the spatiotemporal evolution characteristics and driving factors of the spatial connection network of carbon emissions in China: New evidence from 260 cities," Energy, Elsevier, vol. 291(C).
    19. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    20. Miao, Zhuang & Chen, Xiaodong, 2022. "Combining parametric and non-parametric approach, variable & source -specific productivity changes and rebound effect of energy & environment," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    21. Liu, Hongwei & Yang, Ronglu & Wu, Jie & Chu, Junfei, 2021. "Total-factor energy efficiency change of the road transportation industry in China: A stochastic frontier approach," Energy, Elsevier, vol. 219(C).
    22. Tom Broekel & Pierre-Alexandre Balland & Martijn Burger & Frank Oort, 2014. "Modeling knowledge networks in economic geography: a discussion of four methods," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 423-452, September.
    23. Cheng, An & Jiang, Guogang & Teng, Xiangyu & Xu, Wenting & Li, Yimin & Wu, Longhui & Chiu, Yung-ho, 2024. "Changes in low-carbon transportation efficiency of Chinese roads after considering the impact of new energy vehicles," Transport Policy, Elsevier, vol. 159(C), pages 28-43.
    24. Wang, Feng & Wei, Xianjin & Liu, Juan & He, Lingyun & Gao, Mengnan, 2019. "Impact of high-speed rail on population mobility and urbanisation: A case study on Yangtze River Delta urban agglomeration, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Conghui & Du, Xiaoyun & Zhu, Mengcheng & Ren, Yitian & Fang, Kai, 2023. "The static and dynamic carbon emission efficiency of transport industry in China," Energy, Elsevier, vol. 274(C).
    2. Wang, Luojia & Du, Kerui & Shao, Shuai, 2024. "Transportation infrastructure and carbon emissions: New evidence with spatial spillover and endogeneity," Energy, Elsevier, vol. 297(C).
    3. Yao, Lianxiao & Chen, Weidong, 2025. "Temporal and spatial evolution of low-carbon transportation efficiency and its influencing factors in China," Energy, Elsevier, vol. 315(C).
    4. Jiekun Song & Huisheng Xiao & Zhicheng Liu, 2024. "Analysis of the Driving Mechanism of Urban Carbon Emission Correlation Network in Shandong Province Based on TERGM," Sustainability, MDPI, vol. 16(10), pages 1-24, May.
    5. Hailing Wu & Yuanjun Li & Kaihuai Liao & Qitao Wu & Kanhai Shen, 2024. "Structural Characteristics of Expressway Carbon Emission Correlation Network and Its Influencing Factors: A Case Study in Guangdong Province," Sustainability, MDPI, vol. 16(22), pages 1-20, November.
    6. Wang, Shubin & Li, Jiabao & Lu, Quanying, 2024. "Optimization of carbon peaking achieving paths in China's transportation sector under digital feature clustering," Energy, Elsevier, vol. 313(C).
    7. Pang, Qinghua & Qiu, Man & Zhang, Lina & Chiu, Yung-ho, 2024. "Congestion effects of energy and its influencing factors: China's transportation sector," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    8. Cheng, Hao & Wu, Boyu & Jiang, Xiaokun, 2024. "Study on the spatial network structure of energy carbon emission efficiency and its driving factors in Chinese cities," Applied Energy, Elsevier, vol. 371(C).
    9. Sensen Zhang & Zhenggang Huo, 2023. "Analysis of Spatial Correlation and Influencing Factors of Building a Carbon Emission Reduction Potential Network Based on the Coordination of Equity and Efficiency," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    10. Benchang Chen & Xiangfeng Ji & Xiangyan Ji, 2023. "Dynamic and Static Analysis of Carbon Emission Efficiency in China’s Transportation Sector," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    11. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    12. Changwei Yuan & Jinrui Zhu & Shuai Zhang & Jiannan Zhao & Shibo Zhu, 2024. "Analysis of the Spatial Correlation Network and Driving Mechanism of China’s Transportation Carbon Emission Intensity," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
    13. Zhiqiang Zhu & Xuechi Zhang & Mengqing Xue & Yaoyao Song, 2023. "Eco-Efficiency and Its Evolutionary Change under Regulatory Constraints: A Case Study of Chinese Transportation Industry," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    14. Zhao, Xiaolei, 2024. "Can green transportation accelerate carbon neutrality? Evidence from low-carbon transport systems pilot," Energy, Elsevier, vol. 313(C).
    15. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    16. Shao, Hanhua & Wang, Yaning & Wen, Huwei, 2024. "Investigating the carbon curse of natural resource dependence: A carbon trading scheme," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 769-783.
    17. Zeng, Peng & Tang, HaiYing & Wei, Xu, 2024. "Quantitative simulation and validation of energy carbon emission efficiency changes in Chinese urban agglomerations," Energy, Elsevier, vol. 312(C).
    18. Chen, Xiaodong & Guo, Anda & Miao, Zhuang & Zhu, Pengyu, 2024. "Assessing the performance of the transport sector within the global supply chain context: Decomposition of energy and environmental productivity," Applied Energy, Elsevier, vol. 358(C).
    19. Pan Jiang & Mengyue Li & Yuting Zhao & Xiujuan Gong & Ruifeng Jin & Yuhan Zhang & Xue Li & Liang Liu, 2022. "Does Environmental Regulation Improve Carbon Emission Efficiency? Inspection of Panel Data from Inter-Provincial Provinces in China," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    20. Feng, Xinhui & Lin, Xinle & Li, Yan & Yang, Jiayu & Yu, Er & Lei, Kaige, 2024. "Spatial association network of carbon emission performance: Formation mechanism and structural characteristics," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.