IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v69y2021icp613-628.html
   My bibliography  Save this article

Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency

Author

Listed:
  • Khodadadipour, M.
  • Hadi-Vencheh, A.
  • Behzadi, M.H.
  • Rostamy-malkhalifeh, M.

Abstract

In this study using an input-oriented data envelopment analysis (DEA) model with undesirable outputs a new stochastic model called Expected Ranking Criterion is proposed. The proposed model employs statistical techniques to evaluate the efficiency of decision making units (DMUs) with stochastic data. Based on the proposed model, a stochastic DEA (SDEA) cross-efficiency model is suggested for ranking and discrimination of DMUs. Then, given the non-uniqueness of resulting optimal solution, a stochastic model is introduced for rating priorities by which cross-efficiency evaluation is performed using aggressive approach. Finally, the proposed models are implemented for evaluating 32 thermal power plants. The results show the applicability of the proposed models.

Suggested Citation

  • Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
  • Handle: RePEc:eee:ecanpo:v:69:y:2021:i:c:p:613-628
    DOI: 10.1016/j.eap.2021.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592621000138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2021.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    2. Yang, Feng & Ang, Sheng & Xia, Qiong & Yang, Chenchen, 2012. "Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis," European Journal of Operational Research, Elsevier, vol. 223(2), pages 483-488.
    3. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    4. Jin, Jingliang & Zhou, Dequn & Zhou, Peng, 2014. "Measuring environmental performance with stochastic environmental DEA: The case of APEC economies," Economic Modelling, Elsevier, vol. 38(C), pages 80-86.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2010. "Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5902-5911, October.
    6. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    7. Merja Halme & Tarja Joro & Pekka Korhonen & Seppo Salo & Jyrki Wallenius, 1999. "A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis," Management Science, INFORMS, vol. 45(1), pages 103-115, January.
    8. Sueyoshi, Toshiyuki, 1999. "DEA non-parametric ranking test and index measurement: slack-adjusted DEA and an application to Japanese agriculture cooperatives," Omega, Elsevier, vol. 27(3), pages 315-326, June.
    9. Wanke, Peter & Barros, C.P. & Figueiredo, Otávio, 2016. "Efficiency and productive slacks in urban transportation modes: A two-stage SDEA-Beta Regression approach," Utilities Policy, Elsevier, vol. 41(C), pages 31-39.
    10. A Hadi-Vencheh & A Esmaeilzadeh, 2013. "A new super-efficiency model in the presence of negative data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(3), pages 396-401, March.
    11. Jradi, Samah & Ruggiero, John, 2019. "Stochastic data envelopment analysis: A quantile regression approach to estimate the production frontier," European Journal of Operational Research, Elsevier, vol. 278(2), pages 385-393.
    12. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    13. Thanassoulis, E. & Dyson, R. G., 1992. "Estimating preferred target input-output levels using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 56(1), pages 80-97, January.
    14. Huang, Zhimin & Li, Susan X., 1996. "Dominance stochastic models in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 95(2), pages 390-403, December.
    15. Kao, Chiang & Liu, Shiang-Tai, 2019. "Stochastic efficiency measures for production units with correlated data," European Journal of Operational Research, Elsevier, vol. 273(1), pages 278-287.
    16. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    17. Yeh, Tsai-lien & Chen, Tser-yieth & Lai, Pei-ying, 2010. "A comparative study of energy utilization efficiency between Taiwan and China," Energy Policy, Elsevier, vol. 38(5), pages 2386-2394, May.
    18. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    19. Soares de Mello, João Carlos C.B. & Angulo Meza, Lidia & da Silveira, Juliana Quintanilha & Gomes, Eliane Gonçalves, 2013. "About negative efficiencies in Cross Evaluation BCC input oriented models," European Journal of Operational Research, Elsevier, vol. 229(3), pages 732-737.
    20. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    21. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    22. Wai Peng Wong, 2009. "Performance evaluation of supply chain in stochastic environment: using a simulation based DEA framework," International Journal of Business Performance and Supply Chain Modelling, Inderscience Enterprises Ltd, vol. 1(2/3), pages 203-228.
    23. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    24. Jinpei Liu & Mengdi Fang & Feifei Jin & Chengsong Wu & Huayou Chen, 2020. "Multi-Attribute Decision Making Based on Stochastic DEA Cross-Efficiency with Ordinal Variable and Its Application to Evaluation of Banks’ Sustainable Development," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    25. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    26. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    27. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
    28. W W Cooper & H Deng & Z Huang & S X Li, 2002. "Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1347-1356, December.
    29. Despotis, Dimitris K. & Smirlis, Yiannis G., 2002. "Data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 140(1), pages 24-36, July.
    30. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    31. Jianwei Ren & Bin Gao & Jiewei Zhang & Chunhua Chen, 2020. "Measuring the Energy and Carbon Emission Efficiency of Regional Transportation Systems in China: Chance-Constrained DEA Models," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, April.
    32. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavala Malar Kannan & Govindan Marthandan & Rathimala Kannan, 2021. "Modelling Efficiency of Electric Utilities Using Three Stage Virtual Frontier Data Envelopment Analysis with Variable Selection by Loads Method," Energies, MDPI, vol. 14(12), pages 1-21, June.
    2. Wenhui Zhao & Ye Qiu & Wei Lu & Puyu Yuan, 2022. "Input–Output Efficiency of Chinese Power Generation Enterprises and Its Improvement Direction-Based on Three-Stage DEA Model," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    3. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    4. Balak, Sima & Behzadi, Mohammad Hassan & Nazari, Ali, 2021. "Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 326-341.
    5. Jiang, Hong-Dian & Pradhan, Basanta K. & Dong, Kangyin & Yu, Yan-Yan & Liang, Qiao-Mei, 2024. "An economy-wide impacts of multiple mitigation pathways toward carbon neutrality in China: A CGE-based analysis," Energy Economics, Elsevier, vol. 129(C).
    6. Henriques, C.O. & Gouveia, C.M. & Tenente, M. & da Silva, P.P., 2022. "Employing Value-Based DEA in the eco-efficiency assessment of the electricity sector," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 826-844.
    7. Lin, Boqiang & Zhu, Runqing, 2022. "How does market-oriented reform influence the rebound effect of China’s mining industry?," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 34-44.
    8. Ogunrinde, Olawale & Shittu, Ekundayo, 2023. "Efficiency and productivity of renewable energy technologies: Evidence from U.S. investor-owned utilities across regional markets," Utilities Policy, Elsevier, vol. 82(C).
    9. Teng, Qiang & Zhang, Yu-Fei & Jiang, Hong-Dian & Liang, Qiao-Mei, 2023. "Economy-wide assessment of achieving carbon neutrality in China's power sector: A computable general equilibrium analysis," Renewable Energy, Elsevier, vol. 219(P2).
    10. Lin, Sheng-Wei & Lu, Wen-Min, 2024. "A comparison of chance-constrained data envelopment analysis, stochastic nonparametric envelopment of data and bootstrap method: A case study of cultural regeneration performance of cities," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1179-1191.
    11. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    2. Rashed Khanjani Shiraz & Adel Hatami-Marbini & Ali Emrouznejad & Hirofumi Fukuyama, 2020. "Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs," Operational Research, Springer, vol. 20(3), pages 1863-1898, September.
    3. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    4. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    5. Rashed Khanjani Shiraz & Madjid Tavana & Hirofumi Fukuyama, 2021. "A joint chance-constrained data envelopment analysis model with random output data," Operational Research, Springer, vol. 21(2), pages 1255-1277, June.
    6. Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
    7. Wai‐Peng Wong & Qiang Deng & Ming-Lang Tseng & Loo‐Hay Lee & Chee‐Wooi Hooy, 2014. "A Stochastic Setting To Bank Financial Performance For Refining Efficiency Estimates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 225-245, October.
    8. Ali Ebrahimnejad & Madjid Tavana & Seyed Hadi Nasseri & Omid Gholami, 2019. "A New Method for Solving Dual DEA Problems with Fuzzy Stochastic Data," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 147-170, January.
    9. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    10. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    11. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    12. Sun, Qinghe & Chen, Li & Meng, Qiang, 2022. "Evaluating port efficiency dynamics: A risk-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 333-347.
    13. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    14. Khodabakhshi, M., 2009. "Estimating most productive scale size with stochastic data in data envelopment analysis," Economic Modelling, Elsevier, vol. 26(5), pages 968-973, September.
    15. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    16. Panagiotis Mitropoulos & Panagiotis D. Zervopoulos & Ioannis Mitropoulos, 2020. "Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units," Annals of Operations Research, Springer, vol. 294(1), pages 537-566, November.
    17. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    18. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    19. Suzuki, Soushi & Nijkamp, Peter, 2016. "An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis," Energy Policy, Elsevier, vol. 88(C), pages 100-112.
    20. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:69:y:2021:i:c:p:613-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.