IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v26y2009i5p968-973.html
   My bibliography  Save this article

Estimating most productive scale size with stochastic data in data envelopment analysis

Author

Listed:
  • Khodabakhshi, M.

Abstract

This article estimates most productive scale size in stochastic data envelopment analysis (DEA). Jahanshahloo and Khodabakhshi [Jahanshahloo, G.R. and Khodabakhshi, M., Using input-output orientation model for determining most productive scale size in DEA. Applied Mathematics and Computation 2003, 146(2-3), 849-855.] studied most productive scale size in classic data envelopment analysis. The classic data envelopment analysis requires that the values for all inputs and outputs be known exactly. However, this assumption may not be true, because data in many real applications cannot be precisely measured. One of the important methods to deal with imprecise data is considering stochastic data in DEA. Therefore, this research studies most productive scale size with considering stochastic data in DEA. To that end, input-output orientation model introduced in Jahanshahloo and Khodabakhshi [Jahanshahloo, G.R. and Khodabakhshi, M., Using input-output orientation model for determining most productive scale size in DEA. Applied Mathematics and Computation 2003, 146(2-3), 849-855.] is extended in stochastic data envelopment analysis. To solve the stochastic model, a deterministic equivalent is obtained. Although the deterministic equivalent is non-linear, it can be converted to a quadratic program. Furthermore, data of software companies is used to apply the proposed approach. Performance of software companies are evaluated based on their scale sizes in classic and stochastic data envelopment analysis.

Suggested Citation

  • Khodabakhshi, M., 2009. "Estimating most productive scale size with stochastic data in data envelopment analysis," Economic Modelling, Elsevier, vol. 26(5), pages 968-973, September.
  • Handle: RePEc:eee:ecmode:v:26:y:2009:i:5:p:968-973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264-9993(09)00049-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Li, Susan X., 1998. "Stochastic models and variable returns to scales in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 104(3), pages 532-548, February.
    3. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    4. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    5. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    6. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    7. Huang, Zhimin & Li, Susan X., 1996. "Dominance stochastic models in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 95(2), pages 390-403, December.
    8. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ying-Ming & Lan, Yi-Xin, 2013. "Estimating most productive scale size with double frontiers data envelopment analysis," Economic Modelling, Elsevier, vol. 33(C), pages 182-186.
    2. Moradi-Motlagh, Amir & Babacan, Alperhan, 2015. "The impact of the global financial crisis on the efficiency of Australian banks," Economic Modelling, Elsevier, vol. 46(C), pages 397-406.
    3. Wanke, Peter & Barros, C.P. & Figueiredo, Otávio, 2016. "Efficiency and productive slacks in urban transportation modes: A two-stage SDEA-Beta Regression approach," Utilities Policy, Elsevier, vol. 41(C), pages 31-39.
    4. Lee, Chia-Yen, 2016. "Most productive scale size versus demand fulfillment: A solution to the capacity dilemma," European Journal of Operational Research, Elsevier, vol. 248(3), pages 954-962.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:26:y:2009:i:5:p:968-973. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.