IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v18y2019i01ns0219622018500396.html
   My bibliography  Save this article

A New Method for Solving Dual DEA Problems with Fuzzy Stochastic Data

Author

Listed:
  • Ali Ebrahimnejad

    (Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran)

  • Madjid Tavana

    (Business Systems and Analytics Department, La Salle University, Philadelphia, PA 19141, USA3Business Information Systems Department, Faculty of Business Administration and Economics, University of Paderborn, D-33098 Paderborn, Germany)

  • Seyed Hadi Nasseri

    (Department of Mathematics, University of Mazandaran, Babolsar, Iran)

  • Omid Gholami

    (Department of Mathematics, University of Mazandaran, Babolsar, Iran)

Abstract

Data envelopment analysis (DEA) is a widely used mathematical programming technique for measuring the relative efficiency of decision-making units which consume multiple inputs to produce multiple outputs. Although precise input and output data are fundamentally used in classical DEA models, real-life problems often involve uncertainties characterized by fuzzy and/or random input and output data. We present a new input-oriented dual DEA model with fuzzy and random input and output data and propose a deterministic equivalent model with linear constraints to solve the model. The main contributions of this paper are fourfold: (1) we extend the concept of a normal distribution for fuzzy stochastic variables and propose a DEA model for problems characterized by fuzzy stochastic variables; (2) we transform the proposed DEA model with fuzzy stochastic variables into a deterministic equivalent linear form; (3) the proposed model which is linear and always feasible can overcome the nonlinearity and infeasibility in the existing fuzzy stochastic DEA models; (4) we present a case study in the banking industry to exhibit the applicability of the proposed method and feasibility of the obtained solutions.

Suggested Citation

  • Ali Ebrahimnejad & Madjid Tavana & Seyed Hadi Nasseri & Omid Gholami, 2019. "A New Method for Solving Dual DEA Problems with Fuzzy Stochastic Data," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 147-170, January.
  • Handle: RePEc:wsi:ijitdm:v:18:y:2019:i:01:n:s0219622018500396
    DOI: 10.1142/S0219622018500396
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622018500396
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622018500396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Rui & Liu, Yan-Kui, 2010. "Modeling data envelopment analysis by chance method in hybrid uncertain environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(5), pages 922-950.
    2. Konstantinos Triantis & Olivier Girod, 1998. "A Mathematical Programming Approach for Measuring Technical Efficiency in a Fuzzy Environment," Journal of Productivity Analysis, Springer, vol. 10(1), pages 85-102, July.
    3. Tsionas, Efthymios G. & Papadakis, Emmanuel N., 2010. "A Bayesian approach to statistical inference in stochastic DEA," Omega, Elsevier, vol. 38(5), pages 309-314, October.
    4. Adel Hatami-Marbini & Madjid Tavana & Alireza Ebrahimi, 2011. "A fully fuzzified data envelopment analysis model," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 3(3), pages 252-264.
    5. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    6. HATAMI-MARBINI, Adel & TAVANA, Madjid & EBRAHIMI, Alireza, 2011. "A fully fuzzified data envelopment analysis model," LIDAM Reprints CORE 2322, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. TAVANA, Madjid & SHIRAZ, Rashed Khanjani & HATAMI-MARBINI, Adel & AGRELL, Per J., 2012. "Fuzzy stochastic data envelopment analysis with application to base realignment and closure (BRAC)," LIDAM Reprints CORE 2412, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    9. Huang, Zhimin & Li, Susan X., 1996. "Dominance stochastic models in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 95(2), pages 390-403, December.
    10. Kou, Gang & Ergu, Daji & Shang, Jennifer, 2014. "Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction," European Journal of Operational Research, Elsevier, vol. 236(1), pages 261-271.
    11. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    12. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    13. Rashed Khanjani Shiraz & Madjid Tavana & Khalil Paryab, 2014. "Fuzzy free disposal hull models under possibility and credibility measures," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 6(3), pages 286-306.
    14. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    15. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    16. Li, Susan X., 1998. "Stochastic models and variable returns to scales in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 104(3), pages 532-548, February.
    17. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    18. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    19. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    20. Madjid Tavana & Rashed Khanjani Shiraz & Adel Hatami-Marbini, 2014. "A new chance-constrained DEA model with birandom input and output data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(12), pages 1824-1839, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Kemal Yilmaz & Ali Osman Kusakci & Ekrem Tatoglu & Orkun Icten & Feyzullah Yetgin, 2019. "Performance Evaluation of Real Estate Investment Trusts using a Hybridized Interval Type-2 Fuzzy AHP-DEA Approach: The Case of Borsa Istanbul," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1785-1820, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashed Khanjani Shiraz & Adel Hatami-Marbini & Ali Emrouznejad & Hirofumi Fukuyama, 2020. "Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs," Operational Research, Springer, vol. 20(3), pages 1863-1898, September.
    2. Rashed Khanjani Shiraz & Madjid Tavana & Hirofumi Fukuyama, 2021. "A joint chance-constrained data envelopment analysis model with random output data," Operational Research, Springer, vol. 21(2), pages 1255-1277, June.
    3. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    4. Wei, Guiwu & Chen, Jian & Wang, Jiamin, 2014. "Stochastic efficiency analysis with a reliability consideration," Omega, Elsevier, vol. 48(C), pages 1-9.
    5. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    6. Nathaniel D. Bastian & Tahir Ekin & Hyojung Kang & Paul M. Griffin & Lawrence V. Fulton & Benjamin C. Grannan, 2017. "Stochastic multi-objective auto-optimization for resource allocation decision-making in fixed-input health systems," Health Care Management Science, Springer, vol. 20(2), pages 246-264, June.
    7. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    8. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    9. Kao, Chiang & Liu, Shiang-Tai, 2019. "Stochastic efficiency measures for production units with correlated data," European Journal of Operational Research, Elsevier, vol. 273(1), pages 278-287.
    10. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    11. Toloo, Mehdi & Keshavarz, Esmaeil & Hatami-Marbini, Adel, 2018. "Dual-role factors for imprecise data envelopment analysis," Omega, Elsevier, vol. 77(C), pages 15-31.
    12. Aparicio, Juan & Cordero, Jose M. & Ortiz, Lidia, 2019. "Measuring efficiency in education: The influence of imprecision and variability in data on DEA estimates," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    13. Panagiotis Mitropoulos & Panagiotis D. Zervopoulos & Ioannis Mitropoulos, 0. "Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units," Annals of Operations Research, Springer, vol. 0, pages 1-30.
    14. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    15. Zhimin Huang & Waiman Cheung & Huiwen Wang, 2006. "Cone dominance and efficiency in DEA," Annals of Operations Research, Springer, vol. 145(1), pages 89-103, July.
    16. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    17. Angus Jeang, 2019. "Robust DEA methodology via computer model for conceptual design under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1221-1245, March.
    18. Lovell, Knox, 2001. "Future Research Opportunities in Efficiency and Productivity Analysis," Efficiency Series Papers 2001/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    19. Adel Hatami-Marbini & Per J. Agrell & Hirofumi Fukuyama & Kobra Gholami & Pegah Khoshnevis, 2017. "The role of multiplier bounds in fuzzy data envelopment analysis," Annals of Operations Research, Springer, vol. 250(1), pages 249-276, March.
    20. Zhimin Huang & Susan Li, 2001. "Stochastic DEA Models With Different Types of Input-Output Disturbances," Journal of Productivity Analysis, Springer, vol. 15(2), pages 95-113, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:18:y:2019:i:01:n:s0219622018500396. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.