IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i2p385-393.html
   My bibliography  Save this article

Stochastic data envelopment analysis: A quantile regression approach to estimate the production frontier

Author

Listed:
  • Jradi, Samah
  • Ruggiero, John

Abstract

Data Envelopment Analysis was developed as a deterministic model that assumed that deviations from the production frontier were one sided representing technical inefficiency. The model provides biased estimates of production and inefficiency if deviations from the frontier arise not only from inefficiency but also from statistical noise. Banker (1988, “Stochastic Data Envelopment Analysis,” Working Paper, Carnegie Mellon University) extended Data Envelopment Analysis with a stochastic model to allow not only inefficiency but also statistical noise. Banker's model can be considered a nonparametric quantile regression. Using the celebrated Afriat constraints, the model estimates a piecewise linear production function through the middle of the data. In this paper, we extend Banker's Stochastic DEA model by considering a semi-parametric model that identifies the most likely quantile based on assumptions of the composed error terms. We focus on the most common stochastic frontier model with an error structured constrained to a convolution of the normal and half-normal distributions. Using simulated data, we compare the model to the econometric stochastic frontier model under different distributional assumptions.

Suggested Citation

  • Jradi, Samah & Ruggiero, John, 2019. "Stochastic data envelopment analysis: A quantile regression approach to estimate the production frontier," European Journal of Operational Research, Elsevier, vol. 278(2), pages 385-393.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:385-393
    DOI: 10.1016/j.ejor.2018.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718309421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    2. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    3. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Ruggiero, John, 1999. "Efficiency estimation and error decomposition in the stochastic frontier model: A Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 115(3), pages 555-563, June.
    6. Ondrich, Jan & Ruggiero, John, 2001. "Efficiency measurement in the stochastic frontier model," European Journal of Operational Research, Elsevier, vol. 129(2), pages 434-442, March.
    7. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    8. Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
    9. Rajiv D. Banker & Srikant M. Datar & Chris F. Kemerer, 1991. "A Model to Evaluate Variables Impacting the Productivity of Software Maintenance Projects," Management Science, INFORMS, vol. 37(1), pages 1-18, January.
    10. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    11. Aigner, D J & Amemiya, Takeshi & Poirier, Dale J, 1976. "On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 377-396, June.
    12. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    13. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    14. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    2. Marcel Clermont & Julia Schaefer, 2019. "Identification of Outliers in Data Envelopment Analysis," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 71(4), pages 475-496, October.
    3. Tsionas, Mike G., 2020. "Quantile Stochastic Frontiers," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1177-1184.
    4. Olesen, O.B. & Ruggiero, J., 2022. "The hinging hyperplanes: An alternative nonparametric representation of a production function," European Journal of Operational Research, Elsevier, vol. 296(1), pages 254-266.
    5. Tsionas, Mike G. & Assaf, A. George & Andrikopoulos, Athanasios, 2020. "Quantile stochastic frontier models with endogeneity," Economics Letters, Elsevier, vol. 188(C).
    6. Jinpei Liu & Mengdi Fang & Feifei Jin & Chengsong Wu & Huayou Chen, 2020. "Multi-Attribute Decision Making Based on Stochastic DEA Cross-Efficiency with Ordinal Variable and Its Application to Evaluation of Banks’ Sustainable Development," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    7. Balak, Sima & Behzadi, Mohammad Hassan & Nazari, Ali, 2021. "Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 326-341.
    8. M.V. Leonov, 2021. "Review of Modern Approaches for Assessing the Effectiveness of Banking," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 20(2), pages 294-326.
    9. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    10. Zhao, Shirong, 2021. "Quantile estimation of stochastic frontier models with the normal–half normal specification: A cumulative distribution function approach," Economics Letters, Elsevier, vol. 206(C).
    11. Dai, Sheng & Kuosmanen, Timo & Zhou, Xun, 2023. "Generalized quantile and expectile properties for shape constrained nonparametric estimation," European Journal of Operational Research, Elsevier, vol. 310(2), pages 914-927.
    12. Ioannis E. Tsolas, 2020. "Benchmarking Wind Farm Projects by Means of Series Two-Stage DEA," Clean Technol., MDPI, vol. 2(3), pages 1-12, September.
    13. E. Fusco & R. Benedetti & F. Vidoli, 2023. "Stochastic frontier estimation through parametric modelling of quantile regression coefficients," Empirical Economics, Springer, vol. 64(2), pages 869-896, February.
    14. Ramin Gharizadeh Beiragh & Reza Alizadeh & Saeid Shafiei Kaleibari & Fausto Cavallaro & Sarfaraz Hashemkhani Zolfani & Romualdas Bausys & Abbas Mardani, 2020. "An integrated Multi-Criteria Decision Making Model for Sustainability Performance Assessment for Insurance Companies," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    15. Ghimire, Sarad & Amin, Saman Hassanzadeh & Wardley, Leslie J., 2021. "Developing new data envelopment analysis models to evaluate the efficiency in Ontario Universities," Journal of Informetrics, Elsevier, vol. 15(3).
    16. Zhang, Ning & Huang, Xuhui & Liu, Yunxiao, 2021. "The cost of low-carbon transition for China's coal-fired power plants: A quantile frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    17. Jradi, Samah & Parmeter, Christopher F. & Ruggiero, John, 2021. "Quantile estimation of stochastic frontiers with the normal-exponential specification," European Journal of Operational Research, Elsevier, vol. 295(2), pages 475-483.
    18. Stead, Alexander D. & Wheat, Phill & Greene, William H., 2023. "Robust maximum likelihood estimation of stochastic frontier models," European Journal of Operational Research, Elsevier, vol. 309(1), pages 188-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    2. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    3. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    4. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    5. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    6. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    7. Quaranta, Anna Grazia & Raffoni, Anna & Visani, Franco, 2018. "A multidimensional approach to measuring bank branch efficiency," European Journal of Operational Research, Elsevier, vol. 266(2), pages 746-760.
    8. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    9. Stefan Seifert, 2016. "Semi-Parametric Measures of Scale Characteristics of German Natural Gas-Fired Electricity Generation," Discussion Papers of DIW Berlin 1571, DIW Berlin, German Institute for Economic Research.
    10. Krüger, Jens J., 2012. "A Monte Carlo study of old and new frontier methods for efficiency measurement," European Journal of Operational Research, Elsevier, vol. 222(1), pages 137-148.
    11. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    12. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    13. Kuosmanen, Timo & Zhou, Xun, 2021. "Shadow prices and marginal abatement costs: Convex quantile regression approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 666-675.
    14. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    15. Eskelinen, Juha & Kuosmanen, Timo, 2013. "Intertemporal efficiency analysis of sales teams of a bank: Stochastic semi-nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5163-5175.
    16. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    17. Olesen, O.B. & Ruggiero, J., 2018. "An improved Afriat–Diewert–Parkan nonparametric production function estimator," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1172-1188.
    18. Mekaroonreung, Maethee & Johnson, Andrew L., 2012. "Estimating the shadow prices of SO2 and NOx for U.S. coal power plants: A convex nonparametric least squares approach," Energy Economics, Elsevier, vol. 34(3), pages 723-732.
    19. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    20. Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.

    More about this item

    Keywords

    DEA; Stochastic DEA;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:385-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.