IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v57y2016icp52-61.html
   My bibliography  Save this article

Dynamic DEA models with network structure: An application for Iranian airlines

Author

Listed:
  • Omrani, Hashem
  • Soltanzadeh, Elham

Abstract

Efficiency estimation of interdependent divisions within a company or assessing the interrelated processes in a production system provides insights for improving the operational performance. Recent developments in network data envelopment analysis (NDEA) models enable decision making units (DMUs) to be informed of inefficient processes within the system. The NDEA model assesses the processes of the system in a specific moment and ignores the dynamic effects within the production processes. Thus, without considering the temporal dimension of production processes, biased efficiency measurement will be obtained that provides misleading information to DMUs. For evaluating the performance of a DMU with interrelated processes during specified multiple periods, this paper proposes a relational dynamic NDEA (DNDEA) model which measures the efficiencies of the system and its internal processes over the time, simultaneously. To illustrate the capability of the proposed model, this study for the first time measures the efficiency of eight Iranian airlines in several periods connected to each other by carry over flows. The actual data is gathered in three periods from 2010 to 2012 and the results are compared with the dynamic DEA and network DEA models in the same time span.

Suggested Citation

  • Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
  • Handle: RePEc:eee:jaitra:v:57:y:2016:i:c:p:52-61
    DOI: 10.1016/j.jairtraman.2016.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699716301892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2016.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kao, Chiang, 2009. "Efficiency decomposition in network data envelopment analysis: A relational model," European Journal of Operational Research, Elsevier, vol. 192(3), pages 949-962, February.
    2. Kao, Chiang, 2013. "Dynamic data envelopment analysis: A relational analysis," European Journal of Operational Research, Elsevier, vol. 227(2), pages 325-330.
    3. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    4. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    5. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    6. Po-Chi Chen, 2012. "Measurement of technical efficiency in farrow-to-finish swine production using multi-activity network data envelopment analysis: evidence from Taiwan," Journal of Productivity Analysis, Springer, vol. 38(3), pages 319-331, December.
    7. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    10. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    11. Chen, Chien-Ming, 2009. "A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks," European Journal of Operational Research, Elsevier, vol. 194(3), pages 687-699, May.
    12. Sengupta, Jati K., 1994. "Measuring dynamic efficiency under risk aversion," European Journal of Operational Research, Elsevier, vol. 74(1), pages 61-69, April.
    13. Tavassoli, Mohammad & Faramarzi, Gholam Reza & Farzipoor Saen, Reza, 2014. "Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 146-153.
    14. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    15. Ming-Miin Yu, 2012. "Performance assessment of transport services with the ERM-NDEA model: evidence from a domestic airline in Taiwan," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(7), pages 697-714, July.
    16. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    17. Sebastián Lozano & Ester Gutiérrez, 2014. "A slacks-based network DEA efficiency analysis of European airlines," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(7), pages 623-637, October.
    18. Charnes, A. & Cooper, W. W., 1984. "The non-archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Fare," European Journal of Operational Research, Elsevier, vol. 15(3), pages 333-334, March.
    19. Edward Jaenicke, 2000. "Testing for Intermediate Outputs in Dynamic DEA Models: Accounting for Soil Capital in Rotational Crop Production and Productivity Measures," Journal of Productivity Analysis, Springer, vol. 14(3), pages 247-266, November.
    20. Sengupta, Jati K., 1999. "A dynamic efficiency model using data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 62(3), pages 209-218, September.
    21. Lu, Wen-Min & Wang, Wei-Kang & Hung, Shiu-Wan & Lu, En-Tzu, 2012. "The effects of corporate governance on airline performance: Production and marketing efficiency perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 529-544.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heydari, Chiman & Omrani, Hashem & Taghizadeh, Rahim, 2020. "A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran," Journal of Air Transport Management, Elsevier, vol. 89(C).
    2. Zhang, Anming & Zhang, Yahua, 2021. "Is it time for an integrated aviation market in Northeast Asia? An airline performance perspective," Transport Policy, Elsevier, vol. 110(C), pages 161-169.
    3. Sungmin Park & Pansoo Kim, 2021. "Operational Performance Evaluation of Korean Ship Parts Manufacturing Industry Using Dynamic Network SBM Model," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    4. Helu Xiao & Na Wang & Shanping Wang, 2023. "Dynamic sustainability assessment of poverty alleviation in China: evidence from both novel non-convex global two-stage DEA and Malmquist productivity index," Operational Research, Springer, vol. 23(2), pages 1-40, June.
    5. Yu, Ming-Miin & Nguyen, Minh-Anh Thi, 2023. "Productivity changes of Asia-Pacific airlines: A Malmquist productivity index approach for a two-stage dynamic system," Omega, Elsevier, vol. 115(C).
    6. Hashem Omrani & Meisam Shamsi & Ali Emrouznejad, 2023. "Evaluating sustainable efficiency of decision-making units considering undesirable outputs: an application to airline using integrated multi-objective DEA-TOPSIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 5899-5930, July.
    7. Pooja Bansal & Aparna Mehra & Sunil Kumar, 2022. "Dynamic Metafrontier Malmquist–Luenberger Productivity Index in Network DEA: An Application to Banking Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 297-324, January.
    8. Losa, Eduardo Tola & Arjomandi, Amir & Hervé Dakpo, K. & Bloomfield, Jason, 2020. "Efficiency comparison of airline groups in Annex 1 and non-Annex 1 countries: A dynamic network DEA approach," Transport Policy, Elsevier, vol. 99(C), pages 163-174.
    9. Chen, Zhongfei & Tzeremes, Panayiotis & Tzeremes, Nickolaos G., 2018. "Convergence in the Chinese airline industry: A Malmquist productivity analysis," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 77-86.
    10. Yu, Hang & Zhang, Yahua & Zhang, Anming & Wang, Kun & Cui, Qiang, 2019. "A comparative study of airline efficiency in China and India: A dynamic network DEA approach," Research in Transportation Economics, Elsevier, vol. 76(C).
    11. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    12. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
    13. Liu, Dan & Zhang, Jiahuang & Yu, Ming-Miin, 2023. "Decomposing airline profit inefficiency in NDEA through the non-competitive Nerlovian profit inefficiency model," Journal of Air Transport Management, Elsevier, vol. 107(C).
    14. Vatankhah, Sanaz & Darvishi, Maryam, 2018. "An empirical investigation of antecedent and consequences of internal brand equity: Evidence from the airline industry," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 49-58.
    15. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Assessing the dynamic efficiency and technology gap of airports under different ownerships: A union dynamic NDEA approach," Omega, Elsevier, vol. 119(C).
    16. Monireh Jahani Sayyad Noveiri & Sohrab Kordrostami & Alireza Amirteimoori, 2022. "Performance analysis of sustainable supply networks with bounded, discrete, and joint factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 238-270, January.
    17. Yu, Ming-Miin & Chen, Li-Hsueh, 2023. "Productivity change of airlines: A global total factor productivity index with network structure," Journal of Air Transport Management, Elsevier, vol. 109(C).
    18. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    19. Shiping Mao & Marios Dominikos Kremantzis & Leonidas Sotirios Kyrgiakos & George Vlontzos, 2022. "R&D Performance Evaluation in the Chinese Food Manufacturing Industry Based on Dynamic DEA in the COVID-19 Era," Agriculture, MDPI, vol. 12(11), pages 1-19, November.
    20. Yu, Ming-Miin & Chen, Li-Hsueh & Chiang, Hui, 2017. "The effects of alliances and size on airlines’ dynamic operational performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 197-214.
    21. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    22. Omrani, Hashem & Valipour, Mahsa & Emrouznejad, Ali, 2021. "A novel best worst method robust data envelopment analysis: Incorporating decision makers’ preferences in an uncertain environment," Operations Research Perspectives, Elsevier, vol. 8(C).
    23. Liu, Zhao & Zhang, Huan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2020. "How does industrial policy affect the eco-efficiency of industrial sector? Evidence from China," Applied Energy, Elsevier, vol. 272(C).
    24. Wu, Tai-Hsi & Huang, Shi-Wei & Lin, Mei-Chen & Wang, Hsin-Hua, 2023. "Energy security performance evaluation revisited: From the perspective of the energy supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    3. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    4. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    5. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    6. Kao, Chiang, 2013. "Dynamic data envelopment analysis: A relational analysis," European Journal of Operational Research, Elsevier, vol. 227(2), pages 325-330.
    7. Kao, Chiang, 2014. "Efficiency decomposition in network data envelopment analysis with slacks-based measures," Omega, Elsevier, vol. 45(C), pages 1-6.
    8. Mirdehghan, S. Morteza & Fukuyama, Hirofumi, 2016. "Pareto–Koopmans efficiency and network DEA," Omega, Elsevier, vol. 61(C), pages 78-88.
    9. Kao, Chiang, 2014. "Efficiency decomposition for general multi-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 232(1), pages 117-124.
    10. Adler, Nicole & Liebert, Vanessa & Yazhemsky, Ekaterina, 2013. "Benchmarking airports from a managerial perspective," Omega, Elsevier, vol. 41(2), pages 442-458.
    11. Chang, Young-Tae & (Kevin) Park, Hyosoo & Zou, Bo & Kafle, Nabin, 2016. "Passenger facility charge vs. airport improvement program funds: A dynamic network DEA analysis for U.S. airport financing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 76-93.
    12. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    13. Simona Cohen-Kadosh & Zilla Sinuany-Stern, 2020. "Hip fracture surgery efficiency in Israeli hospitals via a network data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 251-277, March.
    14. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    15. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    16. Zhao, Y. & Triantis, K. & Murray-Tuite, P. & Edara, P., 2011. "Performance measurement of a transportation network with a downtown space reservation system: A network-DEA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1140-1159.
    17. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    18. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
    19. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    20. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:57:y:2016:i:c:p:52-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.