IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v34y2014icp146-153.html
   My bibliography  Save this article

Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input

Author

Listed:
  • Tavassoli, Mohammad
  • Faramarzi, Gholam Reza
  • Farzipoor Saen, Reza

Abstract

The operational performance of airline includes production and consumption technologies for transporting passengers and cargoes. By determining the performance of airlines' operations one can get further insights from the obtained results and can develop appropriate policy for improving the operational performance. This paper, for the first time, proposes a novel slacks-based measure network data envelopment analysis (SBM-NDEA) approach to measure both technical efficiency and service effectiveness of airlines. The proposed model represents both the non-storable feature of transportation service and production technologies in a unified framework in the presence of shared input. Also, the proposed model estimates both technical efficiency and service effectiveness. A case study is presented.

Suggested Citation

  • Tavassoli, Mohammad & Faramarzi, Gholam Reza & Farzipoor Saen, Reza, 2014. "Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 146-153.
  • Handle: RePEc:eee:jaitra:v:34:y:2014:i:c:p:146-153
    DOI: 10.1016/j.jairtraman.2013.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096969971300118X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2013.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence W. Lan & Erwin T. J. Lin, 2006. "Performance Measurement for Railway Transport: Stochastic Distance Functions with Inefficiency and Ineffectiveness Effects," Journal of Transport Economics and Policy, University of Bath, vol. 40(3), pages 383-408, September.
    2. Karlaftis, Matthew G., 2004. "A DEA approach for evaluating the efficiency and effectiveness of urban transit systems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 354-364, January.
    3. Jain, Priyanka & Cullinane, Sharon & Cullinane, Kevin, 2008. "The impact of governance development models on urban rail efficiency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1238-1250, November.
    4. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    5. Olli‐Pekka Hilmola, 2007. "European railway freight transportation and adaptation to demand decline," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 56(3), pages 205-225, March.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
    8. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    9. Scheraga, Carl A., 2004. "Operational efficiency versus financial mobility in the global airline industry: a data envelopment and Tobit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 383-404, June.
    10. Yu, Ming-Miin, 2010. "Assessment of airport performance using the SBM-NDEA model," Omega, Elsevier, vol. 38(6), pages 440-452, December.
    11. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    12. Greer, Mark R., 2008. "Nothing focuses the mind on productivity quite like the fear of liquidation: Changes in airline productivity in the United States, 2000-2004," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 414-426, February.
    13. Reza Farzipoor Saen, 2009. "A decision model for ranking suppliers in the presence of cardinal and ordinal data, weight restrictions, and nondiscretionary factors," Annals of Operations Research, Springer, vol. 172(1), pages 177-192, November.
    14. Juan Carlos Martín & Aura Reggiani, 2007. "Recent Methodological Developments to Measure Spatial Interaction: Synthetic Accessibility Indices Applied to High‐speed Train Investments," Transport Reviews, Taylor & Francis Journals, vol. 27(5), pages 551-571, February.
    15. Lee, Chia-Yen & Johnson, Andrew L., 2012. "Two-dimensional efficiency decomposition to measure the demand effect in productivity analysis," European Journal of Operational Research, Elsevier, vol. 216(3), pages 584-593.
    16. Wanke, Peter F., 2013. "Physical infrastructure and flight consolidation efficiency drivers in Brazilian airports: A two-stage network-DEA approach," Journal of Air Transport Management, Elsevier, vol. 31(C), pages 1-5.
    17. A. George Assaf & Alexander Josiassen, 2011. "The operational performance of UK airlines: 2002‐2007," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 38(1), pages 5-16, January.
    18. Barbot, Cristina & Costa, Ã lvaro & Sochirca, Elena, 2008. "Airlines performance in the new market context: A comparative productivity and efficiency analysis," Journal of Air Transport Management, Elsevier, vol. 14(5), pages 270-274.
    19. Merkert, Rico & Morrell, Peter S., 2012. "Mergers and acquisitions in aviation – Management and economic perspectives on the size of airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 853-862.
    20. Bhadra, Dipasis, 2009. "Race to the bottom or swimming upstream: Performance analysis of US airlines," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 227-235.
    21. Ming-Miin Yu, 2012. "Performance assessment of transport services with the ERM-NDEA model: evidence from a domestic airline in Taiwan," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(7), pages 697-714, July.
    22. Elton Fernandes & Ricardo Pacheco, 2007. "Airport management: a strategic approach," Transportation, Springer, vol. 34(1), pages 129-142, January.
    23. Bazargan, Massoud & Vasigh, Bijan, 2003. "Size versus efficiency: a case study of US commercial airports," Journal of Air Transport Management, Elsevier, vol. 9(3), pages 187-193.
    24. Zhongsheng Hua & Yiwen Bian, 2008. "Performance measurement for network DEA with undesirable factors," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 9(2), pages 141-153.
    25. Chiou, Yu-Chiun & Chen, Yen-Heng, 2006. "Route-based performance evaluation of Taiwanese domestic airlines using data envelopment analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 116-127, March.
    26. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    27. Barros, Carlos Pestana & Couto, Eduardo, 2013. "Productivity analysis of European airlines, 2000–2011," Journal of Air Transport Management, Elsevier, vol. 31(C), pages 11-13.
    28. Cook, Wade D. & Zhu, Joe & Bi, Gongbing & Yang, Feng, 2010. "Network DEA: Additive efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1122-1129, December.
    29. Merkert, Rico & Hensher, David A., 2011. "The impact of strategic management and fleet planning on airline efficiency - A random effects Tobit model based on DEA efficiency scores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 686-695, August.
    30. Barros, Carlos P. & Liang, Qi Bin & Peypoch, Nicolas, 2013. "The technical efficiency of US Airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 139-148.
    31. Lu, Wen-Min & Wang, Wei-Kang & Hung, Shiu-Wan & Lu, En-Tzu, 2012. "The effects of corporate governance on airline performance: Production and marketing efficiency perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 529-544.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    2. Yu, Ming-Miin & Chang, Yu-Chun & Chen, Li-Hsueh, 2016. "Measurement of airlines’ capacity utilization and cost gap: Evidence from low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 186-198.
    3. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).
    4. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    5. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    6. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    7. Cui, Qiang & Li, Ye & Yu, Chen-lu & Wei, Yi-Ming, 2016. "Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure," Energy, Elsevier, vol. 113(C), pages 1231-1240.
    8. Cavaignac, Laurent & Petiot, Romain, 2017. "A quarter century of Data Envelopment Analysis applied to the transport sector: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 84-96.
    9. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    10. Lu, Wen-Min & Wang, Wei-Kang & Hung, Shiu-Wan & Lu, En-Tzu, 2012. "The effects of corporate governance on airline performance: Production and marketing efficiency perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 529-544.
    11. Heshmati, Almas & C. Kumbhakar, Subal & Kim, Jungsuk, 2016. "Persistent and Transient Efficiency of International Airlines," Working Paper Series in Economics and Institutions of Innovation 444, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    12. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    13. Duygun, Meryem & Prior, Diego & Shaban, Mohamed & Tortosa-Ausina, Emili, 2016. "Disentangling the European airlines efficiency puzzle: A network data envelopment analysis approach," Omega, Elsevier, vol. 60(C), pages 2-14.
    14. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
    15. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
    16. Mallikarjun, Sreekanth, 2015. "Efficiency of US airlines: A strategic operating model," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 46-56.
    17. Saranga, Haritha & Nagpal, Rajiv, 2016. "Drivers of operational efficiency and its impact on market performance in the Indian Airline industry," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 165-176.
    18. Barros, Carlos Pestana & Wanke, Peter, 2015. "An analysis of African airlines efficiency with two-stage TOPSIS and neural networks," Journal of Air Transport Management, Elsevier, vol. 44, pages 90-102.
    19. Yu, Ming-Miin & Chen, Li-Hsueh & Chiang, Hui, 2017. "The effects of alliances and size on airlines’ dynamic operational performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 197-214.
    20. Kuljanin, Jovana & Kalić, Milica & Caggiani, Leonardo & Ottomanelli, Michele, 2019. "A comparative efficiency and productivity analysis: Implication to airlines located in Central and South-East Europe," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 152-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:34:y:2014:i:c:p:146-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.