IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v15y2009i5p227-235.html
   My bibliography  Save this article

Race to the bottom or swimming upstream: Performance analysis of US airlines

Author

Listed:
  • Bhadra, Dipasis

Abstract

Data envelopment analysis is used to examine inter-temporal and peer group airline efficiency. Results for the US for 1985–2006 indicate that airline performance is converging over time. In particular, airlines inter-temporal inefficiency peaked earlier and then converged. Furthermore, using Tobit specifications it is seen that while demand intensity matters less in determining airlines inter-temporal inefficiency, their influence is stronger in determining peer group inefficiency. Block time, a representative of operational factors, tends to negatively impact airlines efficiency by imposing burdens on airline operations. Among the structural cost and revenue factors, fuel cost tends to affect inter-temporal inefficiency more robustly than it does to peer group efficiency. Labor pay tends to reduce inefficiency in case of inter-temporal while increasing peer group inefficiency. The events of September 11th had little or no impact on inter-temporal inefficiency but tended to reduce peer group inefficiency in a significant way. Finally, airlines efficiency tends to be robustly affected by block hours; reducing them increases efficiency.

Suggested Citation

  • Bhadra, Dipasis, 2009. "Race to the bottom or swimming upstream: Performance analysis of US airlines," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 227-235.
  • Handle: RePEc:eee:jaitra:v:15:y:2009:i:5:p:227-235
    DOI: 10.1016/j.jairtraman.2008.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699708001336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2008.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gillen, David & Lall, Ashish, 1997. "Developing measures of airport productivity and performance: an application of data envelopment analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 33(4), pages 261-273, December.
    2. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiou, Yu-Chiun & Lan, Lawrence W. & Yen, Barbara T.H., 2012. "Route-based data envelopment analysis models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 415-425.
    2. Adler, Nicole & Berechman, Joseph, 2001. "Measuring airport quality from the airlines' viewpoint: an application of data envelopment analysis," Transport Policy, Elsevier, vol. 8(3), pages 171-181, July.
    3. Zou, Bo & Kafle, Nabin & Chang, Young-Tae & Park, Kevin, 2015. "US airport financial reform and its implications for airport efficiency: An exploratory investigation," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 66-78.
    4. Yu, Ming-Miin & Chen, Li-Hsueh & Chiang, Hui, 2017. "The effects of alliances and size on airlines’ dynamic operational performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 197-214.
    5. Cullinane, Kevin & Wang, Teng-Fei & Song, Dong-Wook & Ji, Ping, 2006. "The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 354-374, May.
    6. Thiago Victorino & Carlos Rosano Peña, 2023. "The Development of Efficiency Analysis in Transportation Systems: A Bibliometric and Systematic Review," Sustainability, MDPI, vol. 15(13), pages 1-32, June.
    7. Adler, Nicole & Liebert, Vanessa & Yazhemsky, Ekaterina, 2013. "Benchmarking airports from a managerial perspective," Omega, Elsevier, vol. 41(2), pages 442-458.
    8. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    9. Ki Han Song & Solsaem Choi & Ik Hyun Han, 2020. "Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    10. Lin, L.C. & Hong, C.H., 2006. "Operational performance evaluation of international major airports: An application of data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 342-351.
    11. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    12. Żółtaszek Agata & Pisarek Renata, 2016. "Effectiveness of National Airlines in Europe – the DEA Approach," Folia Oeconomica Stetinensia, Sciendo, vol. 16(2), pages 103-118, December.
    13. Nicole Adler & Georg Hirte & Shravana Kumar & Hans-Martin Niemeier, 2022. "The impact of specialization, ownership, competition and regulation on efficiency: a case study of Indian seaports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 507-536, September.
    14. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    15. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    16. Ahn, Young-Hyo & Min, Hokey, 2014. "Evaluating the multi-period operating efficiency of international airports using data envelopment analysis and the Malmquist productivity index," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 12-22.
    17. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    18. Liu, W.B. & Zhang, D.Q. & Meng, W. & Li, X.X. & Xu, F., 2011. "A study of DEA models without explicit inputs," Omega, Elsevier, vol. 39(5), pages 472-480, October.
    19. Tae Hoon Oum & Katsuhiro Yamaguchi & Yuichiro Yoshida, 2011. "Efficiency Measurement Theory and its Application to Airport Benchmarking," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 13, Edward Elgar Publishing.
    20. Vincenzo Patrizii & Anna Pettini & Giuliano Resce, 2017. "The Cost of Well-Being," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 985-1010, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:15:y:2009:i:5:p:227-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.