IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v69y2020ics0038012118302350.html
   My bibliography  Save this article

The origins, development and future directions of data envelopment analysis approach in transportation systems

Author

Listed:
  • Mahmoudi, Reza
  • Emrouznejad, Ali
  • Shetab-Boushehri, Seyyed-Nader
  • Hejazi, Seyed Reza

Abstract

Over the last two decades, application of Data envelopment analysis (DEA) in transportation problems have gained considerable research attention. This paper presents a literature review and classification of the applications of DEA in transportation systems (TSs). First by classifying 40 papers from 2007 to 2018, the origins of DEA in transportation problems have been reviewed. Then the development and an overall view of DEA applications in TSs have been presented. We have classified the applications of DEA into six different contexts. In each context, published papers have deeply been analyzed. Content of analysis includes “Number of published papers during the time”, “target journals”, “countries”, “keyword frequency”, “most cited papers”, “map of most co-cited publications”. More important, we reported the “inputs and outputs variables” used in each paper. Further “a review of the selected papers” and “gaps/future research directions” have been given within each cluster. The results show that DEA is one of the most useful approach in evaluating TSs for policy makers. On the other hand, DEA can help the decision makers in transportation especially regarding environmental factors, sustainable development and eco-design. Finally, we proposed subjects for future researches including guidance for new studies in the field of DEA applications in TSs.

Suggested Citation

  • Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
  • Handle: RePEc:eee:soceps:v:69:y:2020:i:c:s0038012118302350
    DOI: 10.1016/j.seps.2018.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012118302350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2018.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karlaftis, Matthew G., 2004. "A DEA approach for evaluating the efficiency and effectiveness of urban transit systems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 354-364, January.
    2. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    3. Adler, Nicole & Golany, Boaz, 2001. "Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe," European Journal of Operational Research, Elsevier, vol. 132(2), pages 260-273, July.
    4. Azadi, Majid & Shabani, Amir & Khodakarami, Mohsen & Farzipoor Saen, Reza, 2014. "Planning in feasible region by two-stage target-setting DEA methods: An application in green supply chain management of public transportation service providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 324-338.
    5. Ville-Veikko Savolainen & Olli-Pekka Hilmola, 2009. "The relative technical efficiency of European transportation systems concerning air transport and railways," International Journal of Business Performance Management, Inderscience Enterprises Ltd, vol. 11(1/2), pages 19-42.
    6. Adler, Nicole & Berechman, Joseph, 2001. "Measuring airport quality from the airlines' viewpoint: an application of data envelopment analysis," Transport Policy, Elsevier, vol. 8(3), pages 171-181, July.
    7. Chen, Chialin & Achtari, Guyves & Majkut, Kevin & Sheu, Jiuh-Biing, 2017. "Balancing equity and cost in rural transportation management with multi-objective utility analysis and data envelopment analysis: A case of Quinte West," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 148-165.
    8. Olli-Pekka Hilmola, 2010. "Analysing global railway passenger transport through two-staged efficiency model," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 2(3), pages 273-284.
    9. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    10. Kevin Cullinane & Dong-Wook Song & Tengfei Wang, 2005. "The Application of Mathematical Programming Approaches to Estimating Container Port Production Efficiency," Journal of Productivity Analysis, Springer, vol. 24(1), pages 73-92, September.
    11. Wanke, Peter & Barros, C.P. & Figueiredo, Otávio, 2016. "Efficiency and productive slacks in urban transportation modes: A two-stage SDEA-Beta Regression approach," Utilities Policy, Elsevier, vol. 41(C), pages 31-39.
    12. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    13. Lam, Shao Wei & Low, Joyce M.W. & Tang, Loon Ching, 2009. "Operational efficiencies across Asia Pacific airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 654-665, July.
    14. Ali Emrouznejad & Marianna Marra, 2017. "The state of the art development of AHP (1979–2017): a literature review with a social network analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6653-6675, November.
    15. Sarkis, Joseph & Talluri, Srinivas, 2004. "Performance based clustering for benchmarking of US airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 329-346, June.
    16. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    17. Min, Hokey & Joo, Seong-Jong, 2016. "A comparative performance analysis of airline strategic alliances using data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 99-110.
    18. Olli-Pekka Hilmola, 2007. "European railway freight transportation and adaptation to demand decline: Efficiency and partial productivity analysis from period of 1980-2003," International Journal of Productivity and Performance Management, Emerald Group Publishing, vol. 56(3), pages 205-225, March.
    19. Daniel (Jian) Sun & Shukai Chen & Chun Zhang & Suwan Shen, 2016. "A bus route evaluation model based on GIS and super-efficient data envelopment analysis," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(4), pages 407-423, June.
    20. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    21. Liu, Dan, 2017. "Evaluating the multi-period efficiency of East Asia airport companies," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 71-82.
    22. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    23. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    24. Hidekazu Itoh, 2002. "Effeciency Changes at Major Container Ports in Japan: A Window Application of Data Envelopment Analysis," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 14(2), pages 133-152, July.
    25. Turner, Hugh & Windle, Robert & Dresner, Martin, 2004. "North American containerport productivity: 1984-1997," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(4), pages 339-356, July.
    26. Cook, Wade D. & Kazakov, Alex & Roll, Yaakov & Seiford, Lawrence M., 1991. "A data envelopment approach to measuring efficiency: Case analysis of highway maintenance patrols," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 20(1), pages 83-103.
    27. María Manuela González & Lourdes Trujillo, 2009. "Efficiency Measurement in the Port Industry: A Survey of the Empirical Evidence," Journal of Transport Economics and Policy, University of Bath, vol. 43(2), pages 157-192, May.
    28. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    29. Pestana Barros, Carlos & Dieke, Peter U.C., 2007. "Performance evaluation of Italian airports: A data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 184-191.
    30. Barros, Carlos Pestana & Dieke, Peter U.C., 2008. "Measuring the economic efficiency of airports: A Simar-Wilson methodology analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(6), pages 1039-1051, November.
    31. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2001. "Relative efficiency of European airports," Transport Policy, Elsevier, vol. 8(3), pages 183-192, July.
    32. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    33. Bazargan, Massoud & Vasigh, Bijan, 2003. "Size versus efficiency: a case study of US commercial airports," Journal of Air Transport Management, Elsevier, vol. 9(3), pages 187-193.
    34. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
    35. Wu, Yen-Chun Jim & Goh, Mark, 2010. "Container port efficiency in emerging and more advanced markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1030-1042, November.
    36. Ro-Kyung Park & Prabir De, 2004. "An Alternative Approach to Efficiency Measurement of Seaports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 6(1), pages 53-69, March.
    37. Örkcü, H. Hasan & Balıkçı, Cemal & Dogan, Mustafa Isa & Genç, Aşır, 2016. "An evaluation of the operational efficiency of turkish airports using data envelopment analysis and the Malmquist productivity index: 2009–2014 case," Transport Policy, Elsevier, vol. 48(C), pages 92-104.
    38. Carlos Pestana Barros, 2006. "A Benchmark Analysis of Italian Seaports Using Data Envelopment Analysis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(4), pages 347-365, December.
    39. Tongzon, Jose, 2001. "Efficiency measurement of selected Australian and other international ports using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(2), pages 107-122, February.
    40. Ilton Leal & Pauli Almada Garcia & Márcio Almeida D’Agosto, 2012. "A data envelopment analysis approach to choose transport modes based on eco-efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(5), pages 767-781, October.
    41. Kerstens, K., 1996. "Technical efficiency measurement and explanation of French urban transit companies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 431-452, November.
    42. Chiou, Yu-Chiun & Chen, Yen-Heng, 2006. "Route-based performance evaluation of Taiwanese domestic airlines using data envelopment analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 116-127, March.
    43. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    44. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    45. Karlaftis, Matthew G., 2003. "Investigating transit production and performance: a programming approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 225-240, March.
    46. Yu, Ming-Miin, 2010. "Assessment of airport performance using the SBM-NDEA model," Omega, Elsevier, vol. 38(6), pages 440-452, December.
    47. Cullinane, Kevin & Ji, Ping & Wang, Teng-fei, 2005. "The relationship between privatization and DEA estimates of efficiency in the container port industry," Journal of Economics and Business, Elsevier, vol. 57(5), pages 433-462.
    48. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    49. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2015. "Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    50. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Inefficiencies and scale economies of European airport operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(5), pages 341-361, September.
    51. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    52. Theo Notteboom & Chris Coeck & Julien Van Den Broeck, 2000. "Measuring and Explaining the Relative Efficiency of Container Terminals by Means of Bayesian Stochastic Frontier Models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 2(2), pages 83-106, June.
    53. Barros, Carlos Pestana, 2008. "Airports in Argentina: Technical efficiency in the context of an economic crisis," Journal of Air Transport Management, Elsevier, vol. 14(6), pages 315-319.
    54. Sampaio, Breno Ramos & Neto, Oswaldo Lima & Sampaio, Yony, 2008. "Efficiency analysis of public transport systems: Lessons for institutional planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(3), pages 445-454, March.
    55. Jonathan Cowie & Darinka Asenova, 1999. "Organisation form, scale effects and efficiency in the British bus industry," Transportation, Springer, vol. 26(3), pages 231-248, August.
    56. Carlos Pestana Barros & Manolis Athanassiou, 2004. "Efficiency in European Seaports with DEA: Evidence from Greece and Portugal," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 6(2), pages 122-140, June.
    57. Jitsuzumi, Toshiya & Nakamura, Akihiro, 2010. "Causes of inefficiency in Japanese railways: Application of DEA for managers and policymakers," Socio-Economic Planning Sciences, Elsevier, vol. 44(3), pages 161-173, September.
    58. Zhao, Y. & Triantis, K. & Murray-Tuite, P. & Edara, P., 2011. "Performance measurement of a transportation network with a downtown space reservation system: A network-DEA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1140-1159.
    59. Chih Cheng CHEN, 2014. "The Operation Of New Transportation Infrastructure And Regional Economic Efficiency: A Case Study Of High Speed Rail In Western Taiwan," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 14(1), pages 179-194.
    60. Cullinane, Kevin & Wang, Teng-Fei & Song, Dong-Wook & Ji, Ping, 2006. "The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 354-374, May.
    61. Fernandes, Elton & Pacheco, R. R., 2002. "Efficient use of airport capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 225-238, March.
    62. Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
    63. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    64. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    65. Teng-Fei Wang & Kevin Cullinane, 2006. "The Efficiency of European Container Terminals and Implications for Supply Chain Management," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 82-99, March.
    66. Song, Malin & Zheng, Wanping & Wang, Zeya, 2016. "Environmental efficiency and energy consumption of highway transportation systems in China," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 441-449.
    67. Angela Stefania Bergantino & Enrico Musso, 2011. "The role of external factors versus managerial ability in determining seaports’ relative efficiency: An input-by-input analysis through a multi-step approach on a panel of Southern European ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 13(2), pages 121-141, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Güner, Samet & Cebeci, Halil İbrahim, 2021. "Output targeting and capacity utilization for a new-built airport: Analysis for the new airport in Istanbul," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    2. Wang, Zhanwei & Song, Woon-Kyung, 2020. "Sustainable airport development with performance evaluation forecasts: A case study of 12 Asian airports," Journal of Air Transport Management, Elsevier, vol. 89(C).
    3. da Costa, Denielle Soares & de Assis Carvalho, Marcus Vinicius Guerra Seraphico & de Figueiredo, Nélio Moura & de Moraes, Hito Braga & Ferreira, Regina Célia Brabo, 2021. "The efficiency of container terminals in the northern region of Brazil," Utilities Policy, Elsevier, vol. 72(C).
    4. Maria Rosa Nieto & Rafael Bernardo Carmona-Benítez, 2021. "An Approach to Measure the Performance and the Efficiency of Future Airport Infrastructure," Mathematics, MDPI, vol. 9(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavaignac, Laurent & Petiot, Romain, 2017. "A quarter century of Data Envelopment Analysis applied to the transport sector: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 84-96.
    2. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    3. Shilin Ye & Xinhua Qi & Yecheng Xu, 2020. "Analyzing the relative efficiency of China’s Yangtze River port system," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 640-660, December.
    4. George E. Halkos & Nickolaos G. Tzeremes, 2015. "Measuring Seaports' Productivity: A Malmquist Productivity Index Decomposition Approach," Journal of Transport Economics and Policy, University of Bath, vol. 49(2), pages 355-376, April.
    5. Chiou, Yu-Chiun & Lan, Lawrence W. & Yen, Barbara T.H., 2012. "Route-based data envelopment analysis models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 415-425.
    6. Chiou, Yu-Chiun & Lan, Lawrence W. & Yen, Barbara T.H., 2010. "A joint measurement of efficiency and effectiveness for non-storable commodities: Integrated data envelopment analysis approaches," European Journal of Operational Research, Elsevier, vol. 201(2), pages 477-489, March.
    7. Güner, Samet, 2015. "Investigating infrastructure, superstructure, operating and financial efficiency in the management of Turkish seaports using data envelopment analysis," Transport Policy, Elsevier, vol. 40(C), pages 36-48.
    8. Wanke, Peter & Barros, C.P. & Nwaogbe, Obioma R., 2016. "Assessing productive efficiency in Nigerian airports using Fuzzy-DEA," Transport Policy, Elsevier, vol. 49(C), pages 9-19.
    9. Kan Tsui, Wai Hong & Balli, Hatice Ozer & Gilbey, Andrew & Gow, Hamish, 2014. "Operational efficiency of Asia–Pacific airports," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 16-24.
    10. Odeck, James & Schøyen, Halvor, 2020. "Productivity and convergence in Norwegian container seaports: An SFA-based Malmquist productivity index approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 222-239.
    11. Cullinane, Kevin & Wang, Teng-Fei & Song, Dong-Wook & Ji, Ping, 2006. "The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 354-374, May.
    12. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    13. Gutiérrez, Ester & Lozano, Sebastián, 2016. "Efficiency assessment and output maximization possibilities of European small and medium sized airports," Research in Transportation Economics, Elsevier, vol. 56(C), pages 3-14.
    14. Gong, Xiaoxing & Wu, Xiaofan & Luo, Meifeng, 2019. "Company performance and environmental efficiency: A case study for shipping enterprises," Transport Policy, Elsevier, vol. 82(C), pages 96-106.
    15. Örkcü, H. Hasan & Balıkçı, Cemal & Dogan, Mustafa Isa & Genç, Aşır, 2016. "An evaluation of the operational efficiency of turkish airports using data envelopment analysis and the Malmquist productivity index: 2009–2014 case," Transport Policy, Elsevier, vol. 48(C), pages 92-104.
    16. Tianbo Tang & Jianxin You & Hui Sun & Hao Zhang, 2019. "Transportation Efficiency Evaluation Considering the Environmental Impact for China’s Freight Sector: A Parallel Data Envelopment Analysis," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    17. Güner, Samet & İbrahim Cebeci, Halil, 2021. "Multi-period efficiency analysis of major European and Asian airports under fixed proportion technologies," Transport Policy, Elsevier, vol. 107(C), pages 24-42.
    18. Angela Stefania Bergantino & Enrico Musso, 2011. "A Multi-step Approach to Model the Relative Efficiency of European Ports: The Role of Regulation and Other Non-discretionary Factors," Chapters, in: Kevin Cullinane (ed.), International Handbook of Maritime Economics, chapter 18, Edward Elgar Publishing.
    19. Sun, Jiasen & Yuan, Yang & Yang, Rui & Ji, Xiang & Wu, Jie, 2017. "Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis," Transport Policy, Elsevier, vol. 60(C), pages 75-86.
    20. Zou, Bo & Kafle, Nabin & Chang, Young-Tae & Park, Kevin, 2015. "US airport financial reform and its implications for airport efficiency: An exploratory investigation," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 66-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:69:y:2020:i:c:s0038012118302350. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/seps .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.