IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v49y2016icp9-19.html
   My bibliography  Save this article

Assessing productive efficiency in Nigerian airports using Fuzzy-DEA

Author

Listed:
  • Wanke, Peter
  • Barros, C.P.
  • Nwaogbe, Obioma R.

Abstract

Performance analysis has become a vital technique for managing airport practices. However, most DEA models applied to airports assume that inputs and outputs are known with absolute precision. Here, we use Fuzzy-DEA models to capture vagueness in input and output measurements obtained from Nigerian airports. These results are subsequently treated by bootstrapped truncated regressions to control the random effects inherent to any sample. Results indicate that the joint use of bootstrapped regressions and FDEA models leads to more robust results, in the sense that fewer significant contextual variables are identified as efficiency drivers. When controlling for fuzziness and randomness, capacity cost was found to be the only significant variable, in addition to a learning component represented by trend. Policy design for Nigerian airports should focus simultaneously on third-party capacity management – such as privatization - while fostering continuous improvement practices to sustain the learning curve.

Suggested Citation

  • Wanke, Peter & Barros, C.P. & Nwaogbe, Obioma R., 2016. "Assessing productive efficiency in Nigerian airports using Fuzzy-DEA," Transport Policy, Elsevier, vol. 49(C), pages 9-19.
  • Handle: RePEc:eee:trapol:v:49:y:2016:i:c:p:9-19
    DOI: 10.1016/j.tranpol.2016.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X16301202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2016.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    3. Wanke, Peter F., 2013. "Physical infrastructure and flight consolidation efficiency drivers in Brazilian airports: A two-stage network-DEA approach," Journal of Air Transport Management, Elsevier, vol. 31(C), pages 1-5.
    4. Quattrone, Agata & Vitetta, Antonino, 2011. "Random and fuzzy utility models for road route choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1126-1139.
    5. Adler, Nicole & Berechman, Joseph, 2001. "Measuring airport quality from the airlines' viewpoint: an application of data envelopment analysis," Transport Policy, Elsevier, vol. 8(3), pages 171-181, July.
    6. Lam, Shao Wei & Low, Joyce M.W. & Tang, Loon Ching, 2009. "Operational efficiencies across Asia Pacific airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 654-665, July.
    7. Yu, Ming-Miin, 2004. "Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors," Journal of Air Transport Management, Elsevier, vol. 10(5), pages 295-303.
    8. Marques, Rui Cunha & Simões, Pedro, 2010. "Measuring the influence of congestion on efficiency in worldwide airports," Journal of Air Transport Management, Elsevier, vol. 16(6), pages 334-336.
    9. Chi-Lok, Andrew Yuen & Zhang, Anming, 2009. "Effects of competition and policy changes on Chinese airport productivity: An empirical investigation," Journal of Air Transport Management, Elsevier, vol. 15(4), pages 166-174.
    10. Wanke, Peter F., 2012. "Efficiency of Brazil's airports: Evidences from bootstrapped DEA and FDH estimates," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 47-53.
    11. Carlos Pestana Barros & Shunsuke Managi & Yuichiro Yoshida, 2011. "Heterogeneity On The Technical Efficiency In Japanese Airports," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 56(04), pages 523-534.
    12. Wanke, Peter F., 2013. "Physical infrastructure and shipment consolidation efficiency drivers in Brazilian ports: A two-stage network-DEA approach," Transport Policy, Elsevier, vol. 29(C), pages 145-153.
    13. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    14. Suzuki, Soushi & Nijkamp, Peter & Rietveld, Piet & Pels, Eric, 2010. "A distance friction minimization approach in data envelopment analysis: A comparative study on airport efficiency," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1104-1115, December.
    15. Pacheco, Ricardo Rodrigues & Fernandes, Elton & de Sequeira Santos, Marcio Peixoto, 2006. "Management style and airport performance in Brazil," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 324-330.
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    18. Barros, Carlos Pestana, 2014. "Airports and tourism in Mozambique," Tourism Management, Elsevier, vol. 41(C), pages 76-82.
    19. Curi, Claudia & Gitto, Simone & Mancuso, Paolo, 2011. "New evidence on the efficiency of Italian airports: A bootstrapped DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 45(2), pages 84-93, June.
    20. Pestana Barros, Carlos & Dieke, Peter U.C., 2007. "Performance evaluation of Italian airports: A data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 184-191.
    21. Gitto, Simone & Mancuso, Paolo, 2012. "Bootstrapping the Malmquist indexes for Italian airports," International Journal of Production Economics, Elsevier, vol. 135(1), pages 403-411.
    22. Barros, Carlos Pestana & Dieke, Peter U.C., 2008. "Measuring the economic efficiency of airports: A Simar-Wilson methodology analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(6), pages 1039-1051, November.
    23. Sheu, Jiuh-Biing, 2004. "A hybrid fuzzy-based approach for identifying global logistics strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(1), pages 39-61, January.
    24. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    25. Bazargan, Massoud & Vasigh, Bijan, 2003. "Size versus efficiency: a case study of US commercial airports," Journal of Air Transport Management, Elsevier, vol. 9(3), pages 187-193.
    26. Lin, L.C. & Hong, C.H., 2006. "Operational performance evaluation of international major airports: An application of data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 342-351.
    27. W. Cooper & Shanling Li & L. Seiford & Kaoru Tone & R. Thrall & J. Zhu, 2001. "Sensitivity and Stability Analysis in DEA: Some Recent Developments," Journal of Productivity Analysis, Springer, vol. 15(3), pages 217-246, May.
    28. Yoshida, Yuichiro & Fujimoto, Hiroyoshi, 2004. "Japanese-airport benchmarking with the DEA and endogenous-weight TFP methods: testing the criticism of overinvestment in Japanese regional airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(6), pages 533-546, November.
    29. Subhash C. Ray, 2010. "A One-Step Procedure for Returns to Scale Classification of Decision Making Units in Data Envelopment Analysis," Working papers 2010-07, University of Connecticut, Department of Economics.
    30. Xu, Jiuping & Yan, Fang & Li, Steven, 2011. "Vehicle routing optimization with soft time windows in a fuzzy random environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1075-1091.
    31. Celik, Erkan & Bilisik, Ozge Nalan & Erdogan, Melike & Gumus, Alev Taskin & Baracli, Hayri, 2013. "An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 28-51.
    32. Diana, Tony, 2010. "Can we explain airport performance? A case study of selected New York airports using a stochastic frontier model," Journal of Air Transport Management, Elsevier, vol. 16(6), pages 310-314.
    33. Kuo, Ming-Shin, 2011. "A novel interval-valued fuzzy MCDM method for improving airlines’ service quality in Chinese cross-strait airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1177-1193.
    34. Barros, Carlos Pestana, 2008. "Technical change and productivity growth in airports: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(5), pages 818-832, June.
    35. M. Zarepisheh & E. Khorram & G. Jahanshahloo, 2010. "Returns to scale in multiplicative models in data envelopment analysis," Annals of Operations Research, Springer, vol. 173(1), pages 195-206, January.
    36. Perelman, Sergio & Serebrisky, Tomas, 2010. "Measuring the technical efficiency of airports in Latin America," Policy Research Working Paper Series 5339, The World Bank.
    37. Yu, Ming-Miin, 2010. "Assessment of airport performance using the SBM-NDEA model," Omega, Elsevier, vol. 38(6), pages 440-452, December.
    38. HATAMI-MARBINI, Adel & SAATI, Saber & TAVANA, Madjid, 2011. "Data envelopment analysis with fuzzy parameters: an interactive approach," LIDAM Reprints CORE 2329, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    39. Wang, Wei-Kang & Lu, Wen-Min & Tsai, Chia-Jen, 2011. "The relationship between airline performance and corporate governance amongst US Listed companies," Journal of Air Transport Management, Elsevier, vol. 17(2), pages 148-152.
    40. Chen, Yu-Chuan & Chiu, Yung-Ho & Huang, Chin-Wei & Tu, Chien Heng, 2013. "The analysis of bank business performance and market risk—Applying Fuzzy DEA," Economic Modelling, Elsevier, vol. 32(C), pages 225-232.
    41. Tsekeris, Theodore, 2011. "Greek airports: Efficiency measurement and analysis of determinants," Journal of Air Transport Management, Elsevier, vol. 17(2), pages 140-142.
    42. Barros, Carlos Pestana, 2008. "Airports in Argentina: Technical efficiency in the context of an economic crisis," Journal of Air Transport Management, Elsevier, vol. 14(6), pages 315-319.
    43. Selim, Hasan & Araz, Ceyhun & Ozkarahan, Irem, 2008. "Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 396-419, May.
    44. Fernandes, Elton & Pacheco, R. R., 2002. "Efficient use of airport capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 225-238, March.
    45. Caggiani, Leonardo & Ottomanelli, Michele & Dell’Orco, Mauro, 2014. "Handling uncertainty in Multi Regional Input-Output models by entropy maximization and fuzzy programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 159-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Carlucci & Andrea Cirà & Paolo Coccorese, 2018. "Measuring and Explaining Airport Efficiency and Sustainability: Evidence from Italy," Sustainability, MDPI, Open Access Journal, vol. 10(2), pages 1-17, February.
    2. Chakraborty, Santonab & Ghosh, Sayantan & Sarker, Baneswar & Chakraborty, Shankar, 2020. "An integrated performance evaluation approach for the Indian international airports," Journal of Air Transport Management, Elsevier, vol. 88(C).
    3. Barak, Sasan & Dahooei, Jalil Heidary, 2018. "A novel hybrid fuzzy DEA-Fuzzy MADM method for airlines safety evaluation," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 134-149.
    4. Nwaogbe Obioma R. & Omoke Victor & Ayinla Akorede Ibrahim & Ojekunle Joel A. & Wokili-Yakubu Hauwa, 2021. "Analysis of Airport Operational Performance in Selected Airports of Northern Nigeria," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 111-122, January.
    5. Alsini, Ibrahim, 2017. "Investigating Effects Of Perceived Service Quality On Overall Service Quality And Customer Satisfaction: Case Of Saudi Airlines," Journal of Spatial and Organizational Dynamics, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 5(4), pages 463-470.
    6. Wanke, Peter & Azad, Abul Kalam & Emrouznejad, Ali, 2018. "Efficiency in BRICS banking under data vagueness: A two-stage fuzzy approach," Global Finance Journal, Elsevier, vol. 35(C), pages 58-71.
    7. Aydın, Umut & Karadayi, Melis Almula & Ülengin, Füsun, 2020. "How efficient airways act as role models and in what dimensions? A superefficiency DEA model enhanced by social network analysis," Journal of Air Transport Management, Elsevier, vol. 82(C).
    8. Tsionas, Mike G. & Chen, Zhongfei & Wanke, Peter, 2017. "A structural vector autoregressive model of technical efficiency and delays with an application to Chinese airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 1-10.
    9. Güner, Samet & Cebeci, Halil İbrahim, 2021. "Output targeting and capacity utilization for a new-built airport: Analysis for the new airport in Istanbul," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    10. Olfat, Laya & Amiri, Maghsoud & Bamdad Soufi, Jahanyar & Pishdar, Mahsa, 2016. "A dynamic network efficiency measurement of airports performance considering sustainable development concept: A fuzzy dynamic network-DEA approach," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 272-290.
    11. Bongo, Miriam F. & Alimpangog, Kissy Mae S. & Loar, Jennifer F. & Montefalcon, Jason A. & Ocampo, Lanndon A., 2018. "An application of DEMATEL-ANP and PROMETHEE II approach for air traffic controllers’ workload stress problem: A case of Mactan Civil Aviation Authority of the Philippines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 198-213.
    12. Matthias Klumpp, 2017. "Do Forwarders Improve Sustainability Efficiency? Evidence from a European DEA Malmquist Index Calculation," Sustainability, MDPI, Open Access Journal, vol. 9(5), pages 1-33, May.
    13. Żółtaszek Agata & Pisarek Renata, 2016. "Effectiveness of National Airlines in Europe – the DEA Approach," Folia Oeconomica Stetinensia, Sciendo, vol. 16(2), pages 103-118, December.
    14. Chen, Ying-Hsiu & Lai, Po-Lin & Piboonrungroj, Pairach, 2017. "The relationship between airport performance and privatisation policy: A nonparametric metafrontier approach," Journal of Transport Geography, Elsevier, vol. 62(C), pages 229-235.
    15. Wanke, Peter & Barros, C.P., 2017. "Efficiency thresholds and cost structure in Senegal airports," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 100-112.
    16. Sun, Jiasen & Yuan, Yang & Yang, Rui & Ji, Xiang & Wu, Jie, 2017. "Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis," Transport Policy, Elsevier, vol. 60(C), pages 75-86.
    17. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    18. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
    19. Mahsa Pishdar & Masoumeh Danesh Shakib & Jurgita Antucheviciene & Arvydas Vilkonis, 2021. "Interval Type-2 Fuzzy Super SBM Network DEA for Assessing Sustainability Performance of Third-Party Logistics Service Providers Considering Circular Economy Strategies in the Era of Industry 4.0," Sustainability, MDPI, Open Access Journal, vol. 13(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgar Ferreira Damacena & Peter Fernandes Wanke & Henrique Luiz Correa, 2016. "Infrastructure expansion in Brazilian airports: slack analysis using a distance friction minimization approach," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 43(2), pages 181-198, June.
    2. Kan Tsui, Wai Hong & Balli, Hatice Ozer & Gilbey, Andrew & Gow, Hamish, 2014. "Operational efficiency of Asia–Pacific airports," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 16-24.
    3. Güner, Samet & İbrahim Cebeci, Halil, 2021. "Multi-period efficiency analysis of major European and Asian airports under fixed proportion technologies," Transport Policy, Elsevier, vol. 107(C), pages 24-42.
    4. Örkcü, H. Hasan & Balıkçı, Cemal & Dogan, Mustafa Isa & Genç, Aşır, 2016. "An evaluation of the operational efficiency of turkish airports using data envelopment analysis and the Malmquist productivity index: 2009–2014 case," Transport Policy, Elsevier, vol. 48(C), pages 92-104.
    5. D’Alfonso, Tiziana & Daraio, Cinzia & Nastasi, Alberto, 2015. "Competition and efficiency in the Italian airport system: new insights from a conditional nonparametric frontier analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 20-38.
    6. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    7. Voltes-Dorta, Augusto & Pagliari, Romano, 2012. "The impact of recession on airports' cost efficiency," Transport Policy, Elsevier, vol. 24(C), pages 211-222.
    8. Wanke, Peter & Barros, C.P., 2017. "Efficiency thresholds and cost structure in Senegal airports," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 100-112.
    9. Liu, Dan, 2016. "Measuring aeronautical service efficiency and commercial service efficiency of East Asia airport companies: An application of Network Data Envelopment Analysis," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 11-22.
    10. Merkert, Rico & Assaf, A. George, 2015. "Using DEA models to jointly estimate service quality perception and profitability – Evidence from international airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 42-50.
    11. Gutiérrez, Ester & Lozano, Sebastián, 2016. "Efficiency assessment and output maximization possibilities of European small and medium sized airports," Research in Transportation Economics, Elsevier, vol. 56(C), pages 3-14.
    12. Fabio Carlucci & Andrea Cirà & Paolo Coccorese, 2018. "Measuring and Explaining Airport Efficiency and Sustainability: Evidence from Italy," Sustainability, MDPI, Open Access Journal, vol. 10(2), pages 1-17, February.
    13. Fragoudaki, Alexandra & Giokas, Dimitris, 2016. "Airport performance in a tourism receiving country: Evidence from Greece," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 80-89.
    14. Uludağ, Ahmet Serhat, 2020. "Measuring the productivity of selected airports in Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    15. Chaouk, Mohammed & Pagliari, Dr Romano & Moxon, Richard, 2020. "The impact of national macro-environment exogenous variables on airport efficiency," Journal of Air Transport Management, Elsevier, vol. 82(C).
    16. Gitto, Simone & Mancuso, Paolo, 2012. "Bootstrapping the Malmquist indexes for Italian airports," International Journal of Production Economics, Elsevier, vol. 135(1), pages 403-411.
    17. Tiziana DíAlfonso & Cinzia Daraio & Alberto Nastasi, 2013. "Assesing the Impact of Competition on the Efficiency of Italian Airports," DIAG Technical Reports 2013-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    18. Vogel, Hans-Arthur & Graham, Anne, 2013. "Devising airport groupings for financial benchmarking," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 32-38.
    19. Fragoudaki, Alexandra & Giokas, Dimitrios, 2020. "Airport efficiency in the dawn of privatization: The case of Greece," Journal of Air Transport Management, Elsevier, vol. 86(C).
    20. Güner, Samet & Cebeci, Halil İbrahim, 2021. "Output targeting and capacity utilization for a new-built airport: Analysis for the new airport in Istanbul," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:49:y:2016:i:c:p:9-19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.