IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5108-d268333.html
   My bibliography  Save this article

Transportation Efficiency Evaluation Considering the Environmental Impact for China’s Freight Sector: A Parallel Data Envelopment Analysis

Author

Listed:
  • Tianbo Tang

    () (School of Management, Shanghai University, Shanghai 200444, China)

  • Jianxin You

    () (School of Management, Shanghai University, Shanghai 200444, China
    School of Economics and Management, Tongji University, Shanghai 200092, China)

  • Hui Sun

    () (Management School, The University of Sheffield, Sheffield S10 1FL, UK)

  • Hao Zhang

    () (School of Economics and Management, Tongji University, Shanghai 200092, China)

Abstract

The freight sector is an important component of China’s national economy. It is composed of multiple sub-sectors and has a complex internal structure. This internal structure can hide information on the freight sector’s operational performance. Previous studies on transportation operational performance made measurements based on the whole transportation sector, and all of these studies ignored the impacts that the internal structure of the sub-sectors have on performance, which leaves a gap in the research. To illustrate this structure, this study proposes a parallel slacks-based measure model to measure transportation efficiency, which can represent the freight sector’s operational performance. The efficiencies of transportation operations for the whole freight sector and its three sub-sectors are further measured, by treating the sub-sectors as parallel subunits. Then, the inefficiency sources from the sub-sectors can be identified by the proposed model. To detect the environmental impact on transportation operations, energy consumption and carbon dioxide emissions are also considered in the evaluation. On the basis of the proposed approach, an application of the Chinese freight sector from 2013 to 2017 is provided. The impacts of influential factors on transportation efficiency are also explored. The empirical findings can be illustrated as follows: (1) there exist significant disparities in regional transportation efficiencies in the freight sector and its sub-sectors; (2) the inefficient transportation performance of the Chinese freight sector mainly derives from the poor performance of the waterway sub-sector; and (3) freight volume and population density have positive impacts on the transportation efficiencies of the railway and highway sub-sectors. Finally, some policies for improving transportation efficiency are also provided.

Suggested Citation

  • Tianbo Tang & Jianxin You & Hui Sun & Hao Zhang, 2019. "Transportation Efficiency Evaluation Considering the Environmental Impact for China’s Freight Sector: A Parallel Data Envelopment Analysis," Sustainability, MDPI, Open Access Journal, vol. 11(18), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5108-:d:268333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5108/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    2. Kao, Chiang, 2013. "Dynamic data envelopment analysis: A relational analysis," European Journal of Operational Research, Elsevier, vol. 227(2), pages 325-330.
    3. Karlaftis, Matthew G., 2004. "A DEA approach for evaluating the efficiency and effectiveness of urban transit systems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 354-364, January.
    4. Kamakaté, Fatumata & Schipper, Lee, 2009. "Trends in truck freight energy use and carbon emissions in selected OECD countries from 1973 to 2005," Energy Policy, Elsevier, vol. 37(10), pages 3743-3751, October.
    5. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    6. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    7. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    8. Tamaki, Tetsuya & Nakamura, Hiroki & Fujii, Hidemichi & Managi, Shunsuke, 2019. "Efficiency and emissions from urban transport: Application to world city-level public transportation," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 55-63.
    9. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    10. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    13. Li, Tao & Yang, Wenyue & Zhang, Haoran & Cao, Xiaoshu, 2016. "Evaluating the impact of transport investment on the efficiency of regional integrated transport systems in China," Transport Policy, Elsevier, vol. 45(C), pages 66-76.
    14. W. Cooper & L. Seiford & K. Tone & J. Zhu, 2007. "Some models and measures for evaluating performances with DEA: past accomplishments and future prospects," Journal of Productivity Analysis, Springer, vol. 28(3), pages 151-163, December.
    15. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
    16. Kerstens, K., 1996. "Technical efficiency measurement and explanation of French urban transit companies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 431-452, November.
    17. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    18. Karlaftis, Matthew G. & Tsamboulas, Dimitrios, 2012. "Efficiency measurement in public transport: Are findings specification sensitive?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 392-402.
    19. Pina, Vicente & Torres, Lourdes, 2001. "Analysis of the efficiency of local government services delivery. An application to urban public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 929-944, December.
    20. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    21. Shao, Yanmin & Sun, Changfu, 2016. "Performance evaluation of China's air routes based on network data envelopment analysis approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 67-75.
    22. Karlaftis, Matthew G., 2003. "Investigating transit production and performance: a programming approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 225-240, March.
    23. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2015. "Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model," Sustainability, MDPI, Open Access Journal, vol. 7(7), pages 1-20, July.
    24. Benjamin, Julian & Obeng, Kofi, 1990. "The effect of policy and background variables on total factor productivity for public transit," Transportation Research Part B: Methodological, Elsevier, vol. 24(1), pages 1-14, February.
    25. Adler, Nicole & Martini, Gianmaria & Volta, Nicola, 2013. "Measuring the environmental efficiency of the global aviation fleet," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 82-100.
    26. Merkert, Rico & Hensher, David A., 2011. "The impact of strategic management and fleet planning on airline efficiency - A random effects Tobit model based on DEA efficiency scores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 686-695, August.
    27. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    28. Kao, Chiang, 2009. "Efficiency measurement for parallel production systems," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1107-1112, August.
    29. Boame, Attah K., 2004. "The technical efficiency of Canadian urban transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(5), pages 401-416, September.
    30. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Xu & Yeqing Wang & Hongwei Liu & Ronglu Yang, 2020. "Environmental Efficiency Measurement and Convergence Analysis of Interprovincial Road Transport in China," Sustainability, MDPI, Open Access Journal, vol. 12(11), pages 1-16, June.
    2. Huiming Liu & Su Wu & Chongwen Zhong & Ying Liu, 2020. "The Sustainable Effect of Operational Performance on Financial Benefits: Evidence from Chinese Quality Awards Winners," Sustainability, MDPI, Open Access Journal, vol. 12(5), pages 1-23, March.

    More about this item

    Keywords

    transportation efficiency; freight sector; parallel structure; slacks-based model; environmental impact;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5108-:d:268333. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.