IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i12p1241-d84156.html
   My bibliography  Save this article

Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China

Author

Listed:
  • Qiong Xia

    (School of Economics, Hefei University of Technology, Hefei 230009, Anhui, China)

  • Min Li

    (School of Economics, Hefei University of Technology, Hefei 230009, Anhui, China)

  • Huaqing Wu

    (School of Economics, Hefei University of Technology, Hefei 230009, Anhui, China)

  • Zhenggang Lu

    (School of Economics, Shanghai University, Shanghai 200444, China)

Abstract

This paper aims at checking the effectiveness of environmental policy pushed by the Central Government at provincial level since China’s entry into the World Trade Organization (WTO). For this purpose, the industrial system of each province is divided into industrial production sub-system and pollution treatment sub-system, and a novel slack-based measure data envelopment analysis (SBM-DEA) model with non-cooperative game is proposed to evaluate the environment efficiency of both industrial production sub-system and pollutant treatment sub-system. The results show that the proposed model can describe the environmental efficiency more precisely than the traditional DEA models. During 2003–2012, the efficiencies of industrial production sub-system and pollution treatment sub-system at the provincial level are both relatively low. Specifically, the efficiency of industrial production is not only lower than pollution treatment efficiency, but is falling generally, especially in the Eastern area. However, in the Central and Western area, the efficiency of industrial production remains relatively stable, and pollution treatment efficiency is rising steadily. The technology gap between the Central/Western area and the Eastern area is narrowing, particularly concerning pollution treatment technology. We thus conclude that though the Central Government’s environmental policies fail to solve the inner contradiction between economic and environmental systems, and they indirectly contribute to the expansion of pollutant treatment technology among the Eastern, Central, and Western areas, which is conducive to the coordinated development among different areas.

Suggested Citation

  • Qiong Xia & Min Li & Huaqing Wu & Zhenggang Lu, 2016. "Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1241-:d:84156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/12/1241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/12/1241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, December.
    2. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    3. Wu, Jie & Lv, Lin & Sun, Jiasen & Ji, Xiang, 2015. "A comprehensive analysis of China's regional energy saving and emission reduction efficiency: From production and treatment perspectives," Energy Policy, Elsevier, vol. 84(C), pages 166-176.
    4. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    5. Jie Wu & Qingyuan Zhu & Junfei Chu & Liang Liang, 2015. "Two-Stage Network Structures with Undesirable Intermediate Outputs Reused: A DEA Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 455-477, October.
    6. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
    7. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    8. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    9. Ke Wang & Shiwei Yu & Wei Zhang, 2011. "China's regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation," CEEP-BIT Working Papers 17, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    10. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    11. Wu, Huaqing & Lv, Kui & Liang, Liang & Hu, Hanhui, 2017. "Measuring performance of sustainable manufacturing with recyclable wastes: A case from China’s iron and steel industry," Omega, Elsevier, vol. 66(PA), pages 38-47.
    12. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    13. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    14. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    15. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    16. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    17. Li, Yongjun & Chen, Yao & Liang, Liang & Xie, Jianhui, 2012. "DEA models for extended two-stage network structures," Omega, Elsevier, vol. 40(5), pages 611-618.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benhong Peng & Yu Tu & Guo Wei, 2018. "Can Environmental Regulations Promote Corporate Environmental Responsibility? Evidence from the Moderated Mediating Effect Model and an Empirical Study in China," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    2. Liexun Yang & Peng Zhou & Ning Zhang, 2017. "A Review of Low-Carbon Transformation and Energy Innovation Issues in China," Sustainability, MDPI, vol. 9(7), pages 1-6, July.
    3. Mojtaba Ghiyasi & Farhad Taghizadeh-Hesary, 2021. "Environmental Efficiency Analysis for Multi Plants Production Technologies," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    4. Pingfan Song & Yunzhi Chen & Zhixiang Zhou & Huaqing Wu, 2018. "Performance Analysis of Peer-to-Peer Online Lending Platforms in China," Sustainability, MDPI, vol. 10(9), pages 1-15, August.
    5. Zhaojun Yang & Weihao Liu & Jun Sun & Yali Zhang, 2017. "Corporate Environmental Responsibility and Environmental Non-Governmental Organizations in China," Sustainability, MDPI, vol. 9(10), pages 1-12, September.
    6. Huaping Sun & Lingxiang Hu & Yong Geng & Guangchuan Yang, 2020. "Uncovering impact factors of carbon emissions from transportation sector: evidence from China’s Yangtze River Delta Area," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1423-1437, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Junfei Chu & Jie Wu & Qingyuan Zhu & Qingxian An & Beibei Xiong, 2019. "Analysis of China’s Regional Eco-efficiency: A DEA Two-stage Network Approach with Equitable Efficiency Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1263-1285, December.
    3. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    4. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Returns to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for s," Energy Economics, Elsevier, vol. 56(C), pages 288-309.
    5. Wu, Jie & Lv, Lin & Sun, Jiasen & Ji, Xiang, 2015. "A comprehensive analysis of China's regional energy saving and emission reduction efficiency: From production and treatment perspectives," Energy Policy, Elsevier, vol. 84(C), pages 166-176.
    6. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    7. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    8. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    9. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    10. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    11. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    12. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    13. Linlin Zhao & Yong Zha & Kangning Wei & Liang Liang, 2017. "A target-based method for energy saving and carbon emissions reduction in China based on environmental data envelopment analysis," Annals of Operations Research, Springer, vol. 255(1), pages 277-300, August.
    14. Hadi Ghafoorian & NikIntan Norhan & Mohammed Ndaliman Abubakar & Fazel Mohammadi Nodeh, 2013. "Efficiency Considering Credit Risk in Banking Industry, Using Two-stage DEA," Journal of Social and Development Sciences, AMH International, vol. 4(8), pages 356-360.
    15. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    16. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    17. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    18. Haifeng Huang & Tao Wang, 2017. "The Total-Factor Energy Efficiency of Regions in China: Based on Three-Stage SBM Model," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    19. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    20. Zhou, D.Q. & Wu, F. & Zhou, X. & Zhou, P., 2016. "Output-specific energy efficiency assessment: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 177(C), pages 117-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1241-:d:84156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.