IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p563-d307802.html
   My bibliography  Save this article

Assessing Global Environmental Sustainability Via an Unsupervised Clustering Framework

Author

Listed:
  • Aiyshwariya Paulvannan Kanmani

    (School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA)

  • Renee Obringer

    (Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA)

  • Benjamin Rachunok

    (School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA)

  • Roshanak Nateghi

    (School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
    Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA)

Abstract

The importance of sustainable development has risen in recent years due to the significant number of people affected by lack of access to essential resources as well as the need to prepare for and adapt to intensifying climate change and rapid urbanization. Modeling frameworks capable of effectively assessing and tracking sustainability lie at the heart of creating effective policies to address these issues. Conventional frameworks, such as the Environmental Performance Index (EPI), that support such policies often involve ranking countries based on a weighted sum of a number of relevant environmental metrics. However, the selection and weighing processes are often biased. Moreover, the ranking process fails to provide policymakers with possible avenues to improve their country’s environmental sustainability. This study aimed to address these gaps by proposing a novel data-driven framework to assess the environmental sustainability of countries objectively by leveraging unsupervised learning theory. Specifically, this framework harnesses a clustering technique known as Self-Organized Maps to group countries based on their characteristic environmental performance metrics and track progression in terms of shifts within clusters over time. The results support the hypothesis that the inconsistencies in the EPI calculation can lead to misrepresentations of the relative sustainability of countries over time. The proposed framework, which does not rely on ranking or data transformations, enables countries to make more informed decisions by identifying effective and specific pathways towards improving their environmental sustainability.

Suggested Citation

  • Aiyshwariya Paulvannan Kanmani & Renee Obringer & Benjamin Rachunok & Roshanak Nateghi, 2020. "Assessing Global Environmental Sustainability Via an Unsupervised Clustering Framework," Sustainability, MDPI, vol. 12(2), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:563-:d:307802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/563/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/563/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bohringer, Christoph & Jochem, Patrick E.P., 2007. "Measuring the immeasurable -- A survey of sustainability indices," Ecological Economics, Elsevier, vol. 63(1), pages 1-8, June.
    2. Robalino, Juan David & Jensen, Henrik Jeldtoft, 2013. "Entangled economy: An ecosystems approach to modeling systemic level dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 773-784.
    3. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
    4. Kortelainen, Mika, 2008. "Dynamic environmental performance analysis: A Malmquist index approach," Ecological Economics, Elsevier, vol. 64(4), pages 701-715, February.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. A Zanella & A S Camanho & T G Dias, 2013. "Benchmarking countries’ environmental performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(3), pages 426-438, March.
    7. Manuel Mendoza-Carranza & Elisabet Ejarque & Leopold A J Nagelkerke, 2018. "Disentangling the complexity of tropical small-scale fisheries dynamics using supervised Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    8. Dong Lu & Ye Tian & Vincent Y. Liu & Yi Zhang, 2015. "The Performance of the Smart Cities in China—A Comparative Study by Means of Self-Organizing Maps and Social Networks Analysis," Sustainability, MDPI, vol. 7(6), pages 1-18, June.
    9. Karolina Taczanowska & Luis-Millán González & Xavier García-Massó & Antoni Zięba & Christiane Brandenburg & Andreas Muhar & Maite Pellicer-Chenoll & José-Luis Toca-Herrera, 2019. "Nature-based Tourism or Mass Tourism in Nature? Segmentation of Mountain Protected Area Visitors Using Self-Organizing Maps (SOM)," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    10. Phillis, Yannis A. & Grigoroudis, Evangelos & Kouikoglou, Vassilis S., 2011. "Sustainability ranking and improvement of countries," Ecological Economics, Elsevier, vol. 70(3), pages 542-553, January.
    11. Pável Vázquez & Jesús A del Río & Karla G Cedano & Jiska van Dijk & Henrik Jeldtoft Jensen, 2018. "Network characterization of the Entangled Model for sustainability indicators. Analysis of the network properties for scenarios," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrbakhsh Nilashi & Shahla Asadi & Rabab Ali Abumalloh & Sarminah Samad & Fahad Ghabban & Eko Supriyanto & Reem Osman, 2021. "Sustainability Performance Assessment Using Self-Organizing Maps (SOM) and Classification and Ensembles of Regression Trees (CART)," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    2. Renee Obringer & Dave D. White, 2023. "Leveraging Unsupervised Learning to Develop a Typology of Residential Water Users’ Attitudes Towards Conservation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 37-53, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahoo, Biresh K. & Singh, Ramadhar & Mishra, Bineet & Sankaran, Krithiga, 2017. "Research productivity in management schools of India during 1968-2015: A directional benefit-of-doubt model analysis," Omega, Elsevier, vol. 66(PA), pages 118-139.
    2. Gianluca Gucciardi, 2022. "Measuring the relative development and integration of EU countries’ capital markets using composite indicators and cluster analysis," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 158(4), pages 1043-1083, November.
    3. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    4. Zhicheng Lai & Lei Li & Zhuomin Tao & Tao Li & Xiaoting Shi & Jialing Li & Xin Li, 2023. "Spatio-Temporal Evolution and Influencing Factors of Ecological Well-Being Performance from the Perspective of Strong Sustainability: A Case Study of the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    5. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    6. Athanassoglou, Stergios, 2015. "Revisiting Worst-case DEA for Composite Indicators," Climate Change and Sustainable Development 198712, Fondazione Eni Enrico Mattei (FEEM).
    7. Rongrong Liu & Dong Chen & Suchang Yang & Yang Chen, 2021. "Evaluation of Green Development Efficiency of the Major Cities in Gansu Province, China," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    8. Hafiz Zahid Mahmood & Roheel Khan & Bilal Mehmood & Muhammad Khan, 2014. "Efficiency Analysis of Conventional vs. Islamic Microfinance: An Appraisal for Sustainability in Pakistan," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 3(4), pages 192-201.
    9. Eva Richterová & Martin Richter & Zlata Sojková, 2021. "Regional eco-efficiency of the agricultural sector in V4 regions, its dynamics in time and decomposition on the technological and pure technical eco-efficiency change," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(3), pages 553-576, September.
    10. Andrés J. Picazo-Tadeo & Juana Castillo & Mercedes Beltrán-Esteve, 2013. "A dynamic approach to measuring ecological-economic performance with directional distance functions: greenhouse gas emissions in the European Union," Working Papers 1304, Department of Applied Economics II, Universidad de Valencia.
    11. Halkos, George & Petrou, Kleoniki Natalia, 2018. "Assessment of national waste generation in EU Member States’ efficiency," MPRA Paper 84590, University Library of Munich, Germany.
    12. Noor Ramli & Susila Munisamy & Behrouz Arabi, 2013. "Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector," Annals of Operations Research, Springer, vol. 211(1), pages 381-398, December.
    13. Xu Wang & Liyan Han & Libo Yin, 2016. "Environmental Efficiency and Its Determinants for Manufacturing in China," Sustainability, MDPI, vol. 9(1), pages 1-18, December.
    14. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    15. Fusco, Elisa & Maggi, Bernardo & Rizzuto, Livia, 2022. "Alternative indicators for the evaluation of renewables in Europe: An efficiency approach," Renewable Energy, Elsevier, vol. 190(C), pages 48-65.
    16. Hametner, Markus & Kostetckaia, Mariia, 2020. "Frontrunners and laggards: How fast are the EU member states progressing towards the sustainable development goals?," Ecological Economics, Elsevier, vol. 177(C).
    17. Victoria Wojcik & Harald Dyckhoff & Marcel Clermont, 2019. "Is data envelopment analysis a suitable tool for performance measurement and benchmarking in non-production contexts?," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 559-595, December.
    18. Corrado Lo Storto, 2016. "Ecological Efficiency Based Ranking of Cities: A Combined DEA Cross-Efficiency and Shannon’s Entropy Method," Sustainability, MDPI, vol. 8(2), pages 1-29, January.
    19. Kuosmanen, Timo & Kuosmanen, Natalia, 2009. "How not to measure sustainable value (and how one might)," Ecological Economics, Elsevier, vol. 69(2), pages 235-243, December.
    20. Chunbin Zhang & Rong Zhou & Jundong Hou & Mengtong Feng, 2022. "Spatial-Temporal Evolution and Convergence Characteristics of Agricultural Eco-Efficiency in China from a Low-Carbon Perspective," Sustainability, MDPI, vol. 14(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:563-:d:307802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.