IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Greenhouse Gas Mitigation in a Carbon Constrained World: The Role of Carbon Capture and Storage

  • Barbara Praetorius
  • Katja Schumacher

In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: Energy efficiency, fuel switching, introduction of carbon dioxide capture and storage along with renewable generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The role of energy technologies is considered crucial in climate change mitigation. In particular, carbon capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. The technology is under development; a number of technological, economic, environmental and safety issues remain to be solved. With regard to its sustainability impact, CCS raises a number of questions: On the one hand, CCS may prolong the prevailing coal-to-electricity regime and countervail efforts in other mitigation categories. On the other hand, given the indisputable need to continue using fossil fuels for some time, it may serve as a bridging technology towards a sustainable energy future. In this paper, we discuss the relevant issues for the case of Germany. We provide a survey of the current state of the art of CCS and activities, and perform an energy-environment-economic analysis using a general equilibrium model for Germany. The model analyzes the impact of introducing carbon constraints with respect to the deployment of CCS, to the resulting greenhouse gas emissions, to the energy and technology mix and with respect to interaction of different mitigation efforts. The results show the relative importance of the components in mitigating greenhouse gas emissions in Germany. For example, under the assumption of a CO2 policy, both energy efficiency and CCS will contribute to climate gas mitigation. A given climate target can be achieved at lower marginal costs when the option of CCS is included. We conclude that, given an appropriate legal and policy framework, CCS, energy efficiency and some other mitigation efforts are complementary measures and should form part of a broad mix of measures required for a successful CO2 mitigation strategy.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.diw.de/documents/publikationen/73/diw_01.c.89042.de/dp820.pdf
Download Restriction: no

Paper provided by DIW Berlin, German Institute for Economic Research in its series Discussion Papers of DIW Berlin with number 820.

as
in new window

Length: 38 p.
Date of creation: 2008
Date of revision:
Handle: RePEc:diw:diwwpp:dp820
Contact details of provider: Postal: Mohrenstraße 58, D-10117 Berlin
Phone: xx49-30-89789-0
Fax: xx49-30-89789-200
Web page: http://www.diw.de/en
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
  2. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
  3. Schumacher, Katja & Sands, Ronald D., 2006. "Innovative energy technologies and climate policy in Germany," Energy Policy, Elsevier, vol. 34(18), pages 3929-3941, December.
  4. Sands, Ronald D., 2004. "Dynamics of carbon abatement in the Second Generation Model," Energy Economics, Elsevier, vol. 26(4), pages 721-738, July.
  5. Martinsen, Dag & Linssen, Jochen & Markewitz, Peter & Vogele, Stefan, 2007. "CCS: A future CO2 mitigation option for Germany?--A bottom-up approach," Energy Policy, Elsevier, vol. 35(4), pages 2110-2120, April.
  6. Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
  7. Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Globalizing carbon lock-in," Energy Policy, Elsevier, vol. 34(10), pages 1185-1197, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp820. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.