IDEAS home Printed from https://ideas.repec.org/p/bcc/wpaper/2012-05.html
   My bibliography  Save this paper

Effects of Carbon Dioxide Capture and Storage in Germany on European Electricity Exchange and Welfare

Author

Listed:
  • Dirk Rübbelke
  • Stefan Vögele

Abstract

In the course of European efforts to mitigate global warming, the application of carbon dioxide capture and storage (CCS) technologies is discussed as a potential option. Some political opposition was raised – inter alia – by uncertainties about the effective cost of such technologies. Because of the cost structure of CCS power plants with high ‘flat’ investment cost and – in case of high carbon allowance prices – comparable low variable cost, the application of CCS will induce a merit-order effect causing a decline in electricity prices on the spot market. On the one hand, the reduction of electricity supply cost raises suppliers’ rents, while the decline of electricity prices augments consumers’ surpluses. These positive welfare effects tend to mitigate political opposition against CCS. On the other hand, the merit-order effect reduces electricity suppliers’ revenues as the electricity prices decline. This mitigates their scope for additional investments in CCS capacity. In this study, we focus on the influence of CCS in Germany on electricity supplier and consumer surpluses and associated impacts on the scope for investments in additional CCS capacity. By means of the applied model of electricity markets, influences on European electricity exchange and welfare levels are investigated

Suggested Citation

  • Dirk Rübbelke & Stefan Vögele, 2012. "Effects of Carbon Dioxide Capture and Storage in Germany on European Electricity Exchange and Welfare," Working Papers 2012-05, BC3.
  • Handle: RePEc:bcc:wpaper:2012-05
    as

    Download full text from publisher

    File URL: http://www.bc3research.org/index.php?option=com_wpapers&task=downpubli&iddoc=48&repec=1&Itemid=279
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rolf Golombek & Mads Greaker & Sverre A.C. Kittelsen & Ole Røgeberg & Finn Roar Aune, 2011. "Carbon Capture and Storage Technologies in the European Power Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 209-238.
    2. Hoel, Michael & Jensen, Svenn, 2012. "Cutting costs of catching carbon—Intertemporal effects under imperfect climate policy," Resource and Energy Economics, Elsevier, vol. 34(4), pages 680-695.
    3. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    4. Praetorius, Barbara & Schumacher, Katja, 2009. "Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage," Energy Policy, Elsevier, vol. 37(12), pages 5081-5093, December.
    5. Kirat, Djamel & Ahamada, Ibrahim, 2011. "The impact of the European Union emission trading scheme on the electricity-generation sector," Energy Economics, Elsevier, vol. 33(5), pages 995-1003, September.
    6. Nestle, Uwe, 2012. "Does the use of nuclear power lead to lower electricity prices? An analysis of the debate in Germany with an international perspective," Energy Policy, Elsevier, vol. 41(C), pages 152-160.
    7. Ibrahim Ahamada & Djamel Kirat, 2011. "The impact of the European Union Emission Trading Scheme on electricity generation," PSE-Ecole d'économie de Paris (Postprint) hal-00629900, HAL.
    8. Ibrahim Ahamada & Djamel Kirat, 2011. "The impact of the European Union Emission Trading Scheme on electricity generation," Post-Print hal-00629900, HAL.
    9. Ricci, Olivia, 2012. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," Energy Policy, Elsevier, vol. 44(C), pages 362-373.
    10. Lüken, Michael & Edenhofer, Ottmar & Knopf, Brigitte & Leimbach, Marian & Luderer, Gunnar & Bauer, Nico, 2011. "The role of technological availability for the distributive impacts of climate change mitigation policy," Energy Policy, Elsevier, vol. 39(10), pages 6030-6039, October.
    11. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    12. Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
    13. Gelabert, Liliana & Labandeira, Xavier & Linares, Pedro, 2011. "An ex-post analysis of the effect of renewables and cogeneration on Spanish electricity prices," Energy Economics, Elsevier, vol. 33(S1), pages 59-65.
    14. Ibrahim Ahamada & Djamel Kirat, 2011. "The impact of the European Union Emission Trading Scheme on electricity generation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00629900, HAL.
    15. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    16. Shackley, Simon & Waterman, Holly & Godfroij, Per & Reiner, David & Anderson, Jason & Draxlbauer, Kathy & Flach, Todd, 2007. "Stakeholder perceptions of CO2 capture and storage in Europe: Results from a survey," Energy Policy, Elsevier, vol. 35(10), pages 5091-5108, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk Rübbelke & Stefan Vögele, 2013. "Time and tide wait for no man: pioneers and laggards in the deployment of CCS," Working Papers 2013-13, BC3.
    2. Mohd Yasin, Nazlina Haiza & Maeda, Toshinari & Hu, Anyi & Yu, Chang-Ping & Wood, Thomas K., 2015. "CO2 sequestration by methanogens in activated sludge for methane production," Applied Energy, Elsevier, vol. 142(C), pages 426-434.
    3. Vögele, Stefan & Rübbelke, Dirk, 2013. "Decisions on investments in photovoltaics and carbon capture and storage: A comparison between two different greenhouse gas control strategies," Energy, Elsevier, vol. 62(C), pages 385-392.
    4. Vögele, Stefan & Rübbelke, Dirk & Mayer, Philip & Kuckshinrichs, Wilhelm, 2018. "Germany’s “No” to carbon capture and storage: Just a question of lacking acceptance?," Applied Energy, Elsevier, vol. 214(C), pages 205-218.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
    2. Teng, Fei & Wang, Xin & Zhiqiang, LV, 2014. "Introducing the emissions trading system to China’s electricity sector: Challenges and opportunities," Energy Policy, Elsevier, vol. 75(C), pages 39-45.
    3. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022. "How effective is carbon pricing?—A machine learning approach to policy evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    4. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    5. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    6. Bersani, Alberto M. & Falbo, Paolo & Mastroeni, Loretta, 2022. "Is the ETS an effective environmental policy? Undesired interaction between energy-mix, fuel-switch and electricity prices," Energy Economics, Elsevier, vol. 110(C).
    7. Feng Liu & Tao Lv & Yuan Meng & Xiaoran Hou & Jie Xu & Xu Deng, 2022. "Low-Carbon Transition Paths of Coal Power in China’s Provinces under the Context of the Carbon Trading Scheme," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    8. Gavard, Claire & Kirat, Djamel, 2018. "Flexibility in the market for international carbon credits and price dynamics difference with European allowances," Energy Economics, Elsevier, vol. 76(C), pages 504-518.
    9. Frieder Mokinski & Nikolas Wölfing, 2014. "The effect of regulatory scrutiny: Asymmetric cost pass-through in power wholesale and its end," Journal of Regulatory Economics, Springer, vol. 45(2), pages 175-193, April.
    10. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    11. Andrianesis, Panagiotis & Biskas, Pandelis & Liberopoulos, George, 2021. "Evaluating the cost of emissions in a pool-based electricity market," Applied Energy, Elsevier, vol. 298(C).
    12. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Foley, Aoife & Huisingh, Donald & Guan, Dabo & Dong, Xiaobin & Varbanov, Petar Sabev, 2021. "Unsustainable imbalances and inequities in Carbon-Water-Energy flows across the EU27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Xie, Li & Zhou, Zhichao & Hui, Shimin, 2022. "Does environmental regulation improve the structure of power generation technology? Evidence from China's pilot policy on the carbon emissions trading market(CETM)," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    14. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    15. Knaut, Andreas & Tode, Christian & Lindenberger, Dietmar & Malischek, Raimund & Paulus, Simon & Wagner, Johannes, 2016. "The reference forecast of the German energy transition—An outlook on electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 477-491.
    16. Paolo Falbo & Cristian Pelizzari & Luca Taschini, 2016. "Renewables, allowances markets, and capacity expansion in energy-only markets," GRI Working Papers 246, Grantham Research Institute on Climate Change and the Environment.
    17. Zhou, Fengxiu & Wang, Xiaoyu, 2022. "The carbon emissions trading scheme and green technology innovation in China: A new structural economics perspective," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 365-381.
    18. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Golombek, Rolf & Kittelsen, Sverre A.C. & Rosendahl, Knut Einar, 2013. "Price and welfare effects of emission quota allocation," Energy Economics, Elsevier, vol. 36(C), pages 568-580.
    20. Djamel Kirat & Ibrahim Ahamada, 2016. "Evidence for threshold eff​ects in the pass-through of carbon prices to wholesale electricity prices," Economics Bulletin, AccessEcon, vol. 36(4), pages 2350-2364.

    More about this item

    Keywords

    Carbon dioxide capture and storage (CCS); merit-order effect; redistribution of wealth;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcc:wpaper:2012-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergio Henrique Faria (email available below). General contact details of provider: https://www.bc3research.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.