IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v26y2004i4p721-738.html
   My bibliography  Save this article

Dynamics of carbon abatement in the Second Generation Model

Author

Listed:
  • Sands, Ronald D.

Abstract

No abstract is available for this item.

Suggested Citation

  • Sands, Ronald D., 2004. "Dynamics of carbon abatement in the Second Generation Model," Energy Economics, Elsevier, vol. 26(4), pages 721-738, July.
  • Handle: RePEc:eee:eneeco:v:26:y:2004:i:4:p:721-738
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(04)00045-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher N. MacCracken & James A. Edmonds & Son H. Kim & Ronald D. Sands, 1999. "The Economics of the Kyoto Protocol," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 25-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Praetorius, Barbara & Schumacher, Katja, 2009. "Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage," Energy Policy, Elsevier, vol. 37(12), pages 5081-5093, December.
    2. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    3. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    4. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    5. Shinichiro Fujimori & Volker Krey & Detlef Vuuren & Ken Oshiro & Masahiro Sugiyama & Puttipong Chunark & Bundit Limmeechokchai & Shivika Mittal & Osamu Nishiura & Chan Park & Salony Rajbhandari & Dieg, 2021. "A framework for national scenarios with varying emission reductions," Nature Climate Change, Nature, vol. 11(6), pages 472-480, June.
    6. McFarland, James R. & Paltsev, Sergey & Jacoby, Henry D., 2009. "Analysis of the Coal Sector under Carbon Constraints," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 404-424, May.
    7. Cai, Yiyong & Arora, Vipin, 2015. "Disaggregating electricity generation technologies in CGE models: A revised technology bundle approach with an application to the U.S. Clean Power Plan," Applied Energy, Elsevier, vol. 154(C), pages 543-555.
    8. Chris Bataille, Mark Jaccard, John Nyboer and Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 93-112.
    9. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.
    10. Auffhammer, Maximilian, 2007. "The rationality of EIA forecasts under symmetric and asymmetric loss," Resource and Energy Economics, Elsevier, vol. 29(2), pages 102-121, May.
    11. Schumacher, Katja & Sands, Ronald D., 2006. "Innovative energy technologies and climate policy in Germany," Energy Policy, Elsevier, vol. 34(18), pages 3929-3941, December.
    12. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    13. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
    14. Jacoby, Henry D. & Reilly, John M. & McFarland, James R. & Paltsev, Sergey, 2006. "Technology and technical change in the MIT EPPA model," Energy Economics, Elsevier, vol. 28(5-6), pages 610-631, November.
    15. Auffhammer, Maximilian, 2005. "The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss," CUDARE Working Papers 25017, University of California, Berkeley, Department of Agricultural and Resource Economics.
    16. Shivika Mittal & Jing-Yu Liu & Shinichiro Fujimori & Priyadarshi Ramprasad Shukla, 2018. "An Assessment of Near-to-Mid-Term Economic Impacts and Energy Transitions under “2 °C” and “1.5 °C” Scenarios for India," Energies, MDPI, vol. 11(9), pages 1-17, August.
    17. Lin-Ju Chen & Zhen-Hai Fang & Fei Xie & Hai-Kuo Dong & Yu-Heng Zhou, 2020. "Technology-side carbon abatement cost curves for China’s power generation sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1305-1323, October.
    18. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2014. "Abating CO2 emissions in the Greek energy and industry sectors," MPRA Paper 60807, University Library of Munich, Germany.
    19. Donald Larson & Gunnar Breustedt, 2009. "Will Markets Direct Investments Under the Kyoto Protocol? Lessons from the Activities Implemented Jointly Pilots," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 433-456, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Zhang, ZhongXiang, 2002. "The economic effects of an alternative EU emissions policy," Journal of Policy Modeling, Elsevier, vol. 24(7-8), pages 667-677, November.
    4. Zhang, ZhongXiang, 2001. "An economic assessment of the Kyoto Protocol using a global model based on the marginal abatement costs of 12 regions," MPRA Paper 13148, University Library of Munich, Germany.
    5. Christoph Böhringer & Thomas Rutherford & Marco Springmann, 2015. "Clean-Development Investments: An Incentive-Compatible CGE Modelling Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(4), pages 633-651, April.
    6. Pan, Haoran & Regemorter, Denise Van, 2004. "The costs and benefits of early action before Kyoto compliance," Energy Policy, Elsevier, vol. 32(13), pages 1477-1486, September.
    7. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    8. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    9. ZhongXiang Zhang, 2000. "Estimating the size of the potential market for the Kyoto flexibility mechanisms," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 136(3), pages 491-521, September.
    10. Ron SANDS & Katja SCHUMACHER, 2008. "Decomposition Analysis and Climate Policy in a General Equilibrium Model of Germany," EcoMod2008 23800124, EcoMod.
    11. Allison, Juliann Emmons & Lents, Jim, 2002. "Encouraging distributed generation of power that improves air quality: can we have our cake and eat it too?," Energy Policy, Elsevier, vol. 30(9), pages 737-752, July.
    12. Ribera, Luis & McCarl, Bruce & Zenteno, Joaquin, 2009. "Carbon Sequestration: a Potential Source of Income for Farmers," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2009, pages 1-8.
    13. Zhang, ZhongXiang, 2004. "Meeting the Kyoto targets: the importance of developing country participation," Journal of Policy Modeling, Elsevier, vol. 26(1), pages 3-19, January.
    14. Bohringer, Christoph & Loschel, Andreas, 2006. "Computable general equilibrium models for sustainability impact assessment: Status quo and prospects," Ecological Economics, Elsevier, vol. 60(1), pages 49-64, November.
    15. Zhou, Mo, 2015. "Adapting sustainable forest management to climate policy uncertainty: A conceptual framework," Forest Policy and Economics, Elsevier, vol. 59(C), pages 66-74.
    16. Juliann Allison, 2005. "Distributed Generation of Electricity: The Role of Academic Research and Advice in California’s “Clean DG” Policy Network," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 5(4), pages 405-414, December.
    17. repec:zbw:hohpro:354 is not listed on IDEAS
    18. Dalton, Michael & O'Neill, Brian & Prskawetz, Alexia & Jiang, Leiwen & Pitkin, John, 2008. "Population aging and future carbon emissions in the United States," Energy Economics, Elsevier, vol. 30(2), pages 642-675, March.
    19. Schumacher, Katja & Sands, Ronald D., 2006. "Innovative energy technologies and climate policy in Germany," Energy Policy, Elsevier, vol. 34(18), pages 3929-3941, December.
    20. Holtsmark, Bjart & Maestad, Ottar, 2002. "Emission trading under the Kyoto Protocol--effects on fossil fuel markets under alternative regimes," Energy Policy, Elsevier, vol. 30(3), pages 207-218, February.
    21. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:26:y:2004:i:4:p:721-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.