IDEAS home Printed from https://ideas.repec.org/f/psa832.html
   My authors  Follow this author

Ronald Douglas Sands

Personal Details

First Name:Ronald
Middle Name:Douglas
Last Name:Sands
Suffix:
RePEc Short-ID:psa832
Terminal Degree:1990 Department of Economics; University of Minnesota (from RePEc Genealogy)

Affiliation

Economic Research Service
Department of Agriculture
Government of the United States

Washington, District of Columbia (United States)
http://www.ers.usda.gov/

: 202-694-5050
202-694-5700
1400 Independence Ave.,SW, Mail Stop 1800, Washington, DC 20250-1800
RePEc:edi:ersgvus (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Tian, Xiaohui & Sohngen, Brent & Sands, Ronald, 2013. "Modeling a Dynamic Forest Sector in a General Equilibrium Framework," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149990, Agricultural and Applied Economics Association.
  2. Kim, C.S. & Lewandrowski, Jan & Sands, Ronald D. & Johansson, Robert C., 2011. "Permanence of Carbon Sequestered in Forests under Uncertainty," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103565, Agricultural and Applied Economics Association.
  3. Beckman, Jayson F. & Evans, Samuel & Sands, Ronald D., 2011. "U.S. Renewable Fuel Standard 2: Impacts of Cellulosic Biofuel Production," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103751, Agricultural and Applied Economics Association.
  4. Lambert, Dayton M. & Livingston, Michael J. & Nehring, Richard F. & Sands, Ronald D. & Wechsler, Seth James, 2010. "The Cost of Increasing Adoption of Beneficial Nutrient-Management Practices," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 60946, Agricultural and Applied Economics Association.
  5. Sands, Ronald & Kim, Man-Keun, 2008. "Modeling the Competition for Land: Methods and Application to Climate Policy," GTAP Working Papers 2606, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
  6. Katja Schumacher & Ronald D. Sands, 2006. "Where Are the Industrial Technologies in Energy-Economy Models?: An Innovative CGE Approach for Steel Production in Germany," Discussion Papers of DIW Berlin 605, DIW Berlin, German Institute for Economic Research.
  7. Katja Schumacher & Ronald D. Sands, 2005. "Innovative Energy Technologies and Climate Policy in Germany," Discussion Papers of DIW Berlin 509, DIW Berlin, German Institute for Economic Research.
  8. Uwe A. Schneider & Bruce A. McCarl & Brian C. Murray & Jimmy R. Williams & Ronald D. Sands, 2001. "Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry," Center for Agricultural and Rural Development (CARD) Publications 01-wp281, Center for Agricultural and Rural Development (CARD) at Iowa State University.

Articles

  1. Carol A. Jones & Ronald D. Sands, 2013. "Impact of Agricultural Productivity Gains on Greenhouse Gas Emissions: A Global Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1309-1316.
  2. Jayson Beckman & Carol Adaire Jones & Ronald Sands, 2011. "A Global General Equilibrium Analysis of Biofuel Mandates and Greenhouse Gas Emissions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 334-341.
  3. Sands, Ronald D., 2009. "Land Use Can Play Critical Role in Controlling Global Warming," Amber Waves, United States Department of Agriculture, Economic Research Service, September.
  4. Kenneth Gillingham & Steven Smith & Ronald Sands, 2008. "Impact of bioenergy crops in a carbon dioxide constrained world: an application of the MiniCAM energy-agriculture and land use model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(7), pages 675-701, August.
  5. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
  6. Schumacher, Katja & Sands, Ronald D., 2006. "Innovative energy technologies and climate policy in Germany," Energy Policy, Elsevier, vol. 34(18), pages 3929-3941, December.
  7. Allen A. Fawcett and Ronald D. Sands, 2006. "Non-CO2 Greenhouse Gases in the Second Generation Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 305-322.
  8. Sands, Ronald D., 2004. "Dynamics of carbon abatement in the Second Generation Model," Energy Economics, Elsevier, vol. 26(4), pages 721-738, July.
  9. Dhazn Gillig & Bruce McCarl & Ronald Sands, 2004. "Integrating agricultural and forestry GHG mitigation response into general economy frameworks: Developing a family of response functions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(3), pages 241-259, July.
  10. Christopher N. MacCracken & James A. Edmonds & Son H. Kim & Ronald D. Sands, 1999. "The Economics of the Kyoto Protocol," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 25-71.
  11. Scott, Michael J. & Sands, Ronald D. & Edmonds, Jae & Liebetrau, Albert M. & Engel, David W., 1999. "Uncertainty in integrated assessment models: modeling with MiniCAM 1.0," Energy Policy, Elsevier, vol. 27(14), pages 855-879, December.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Beckman, Jayson F. & Evans, Samuel & Sands, Ronald D., 2011. "U.S. Renewable Fuel Standard 2: Impacts of Cellulosic Biofuel Production," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103751, Agricultural and Applied Economics Association.

    Cited by:

    1. Cai, Hua & Hu, Xiaojun & Xu, Ming, 2013. "Impact of emerging clean vehicle system on water stress," Applied Energy, Elsevier, vol. 111(C), pages 644-651.

  2. Sands, Ronald & Kim, Man-Keun, 2008. "Modeling the Competition for Land: Methods and Application to Climate Policy," GTAP Working Papers 2606, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.

    Cited by:

    1. Kim, C.S. & Lewandrowski, Jan & Sands, Ronald D. & Johansson, Robert C., 2011. "Permanence of Carbon Sequestered in Forests under Uncertainty," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103565, Agricultural and Applied Economics Association.
    2. Tian, Xiaohui & Sohngen, Brent & Sands, Ronald, 2013. "Modeling a Dynamic Forest Sector in a General Equilibrium Framework," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149990, Agricultural and Applied Economics Association.
    3. Edwin van der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    4. Michetti, Melania & Parrado, Ramiro, 2012. "Improving land-use modelling within CGE to assess forest-based mitigation potential and costs," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124887, Agricultural and Applied Economics Association.
    5. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, Open Access Journal, vol. 3(3), pages 1-41, July.
    6. Diermeier, Matthias & Schmidt, Torsten, 2014. "Oil price effects on land use competition: an empirical analysis," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), January.

  3. Katja Schumacher & Ronald D. Sands, 2006. "Where Are the Industrial Technologies in Energy-Economy Models?: An Innovative CGE Approach for Steel Production in Germany," Discussion Papers of DIW Berlin 605, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Victoria Alexeeva-Talebi & Andreas Löschel & Christoph Böhringer & Sebastian Voigt, 2011. "The Value-Added of Sectoral Disaggregation: Implication on Competitive Consequences of Climate Change Policies," EcoMod2011 3100, EcoMod.
    2. Ruben Bibas & Aurélie Méjean & Meriem Hamdi-Cherif, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Post-Print hal-01086071, HAL.
    3. Greening, Lorna A. & Boyd, Gale & Roop, Joseph M., 2007. "Modeling of industrial energy consumption: An introduction and context," Energy Economics, Elsevier, vol. 29(4), pages 599-608, July.
    4. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    5. Matthew Winning & Alvaro Calzadilla & Raimund Bleischwitz & Victor Nechifor, 2017. "Towards a circular economy: insights based on the development of the global ENGAGE-materials model and evidence for the iron and steel industry," International Economics and Economic Policy, Springer, vol. 14(3), pages 383-407, July.
    6. Marlene Arens & Ernst Worrell & Joachim Schleich, 2012. "Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007," Grenoble Ecole de Management (Post-Print) hal-00805730, HAL.
    7. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    8. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    9. Stefan Nabernegg & Birgit Bednar-Friedl & Pablo Munoz & Michaela Tietz & Johanna Vogel, 2018. "National policies for global emission reductions: Effectiveness of carbon emission reductions in international supply chains," Graz Economics Papers 2018-10, University of Graz, Department of Economics.
    10. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    11. Frédéric Branger, Philippe Quirion, Julien Chevallier, 2017. "Carbon Leakage and Competitiveness of Cement and Steel Industries Under the EU ETS: Much Ado About Nothing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    12. Agnolucci, Paolo, 2009. "The energy demand in the British and German industrial sectors: Heterogeneity and common factors," Energy Economics, Elsevier, vol. 31(1), pages 175-187, January.
    13. Ronald Sands & Hannah Förster & Carol Jones & Katja Schumacher, 2014. "Bio-electricity and land use in the Future Agricultural Resources Model (FARM)," Climatic Change, Springer, vol. 123(3), pages 719-730, April.
    14. Stefan Nabernegg & Birgit Bednar-Friedl & Fabian Wagner & Thomas Schinko & Janusz Cofala & Yadira Mori Clement, 2017. "The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India," Energies, MDPI, Open Access Journal, vol. 10(3), pages 1-26, March.
    15. Boeters, Stefan & Koornneef, Joris, 2011. "Supply of renewable energy sources and the cost of EU climate policy," Energy Economics, Elsevier, vol. 33(5), pages 1024-1034, September.
    16. Vipin Arora & Yiyong Cai, 2014. "Disaggregating Electricity Generation Technologies in CGE Models," CAMA Working Papers 2014-54, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Zhou, Sheng & Kyle, G. Page & Yu, Sha & Clarke, Leon E. & Eom, Jiyong & Luckow, Patrick & Chaturvedi, Vaibhav & Zhang, Xiliang & Edmonds, James A., 2013. "Energy use and CO2 emissions of China's industrial sector from a global perspective," Energy Policy, Elsevier, vol. 58(C), pages 284-294.
    18. Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
    19. Florens Flues & Dirk Rübbelke & Stefan Vögele, 2013. "Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry," Working Papers 2013.96, Fondazione Eni Enrico Mattei.
    20. André Sceia & Juan-Carlos Altamirano-Cabrera & Marc Vielle & Nicolas Weidmann, 2012. "Assessment of Acceptable Swiss post-2012 Climate Policies," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 347-380, June.
    21. Patrick Breun & Magnus Fröhling & Konrad Zimmer & Frank Schultmann, 2017. "Analyzing investment strategies under changing energy and climate policies: an interdisciplinary bottom-up approach regarding German metal industries," Journal of Business Economics, Springer, vol. 87(1), pages 5-39, January.

  4. Katja Schumacher & Ronald D. Sands, 2005. "Innovative Energy Technologies and Climate Policy in Germany," Discussion Papers of DIW Berlin 509, DIW Berlin, German Institute for Economic Research.

    Cited by:

    1. Praetorius, Barbara & Schumacher, Katja, 2009. "Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage," Energy Policy, Elsevier, vol. 37(12), pages 5081-5093, December.
    2. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    3. Melchior, Tobias & Madlener, Reinhard, 2012. "Economic evaluation of IGCC plants with hot gas cleaning," Applied Energy, Elsevier, vol. 97(C), pages 170-184.
    4. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    5. Gnanapragasam, Nirmal V. & Reddy, Bale V. & Rosen, Marc A., 2009. "Optimum conditions for a natural gas combined cycle power generation system based on available oxygen when using biomass as supplementary fuel," Energy, Elsevier, vol. 34(6), pages 816-826.
    6. Kraeusel, Jonas & Möst, Dominik, 2012. "Carbon Capture and Storage on its way to large-scale deployment: Social acceptance and willingness to pay in Germany," Energy Policy, Elsevier, vol. 49(C), pages 642-651.
    7. Vallentin, Daniel, 2007. "Inducing the international diffusion of carbon capture and storage technologies in the power sector," Wuppertal Papers 162, Wuppertal Institute for Climate, Environment and Energy.
    8. Katja Schumacher & Ronald D. Sands, 2006. "Where Are the Industrial Technologies in Energy-Economy Models?: An Innovative CGE Approach for Steel Production in Germany," Discussion Papers of DIW Berlin 605, DIW Berlin, German Institute for Economic Research.
    9. Liu, Chung-Ming & Liou, Ming-Lone & Yeh, Shin-Cheng & Shang, Neng-Chou, 2009. "Target-aimed versus wishful-thinking in designing efficient GHG reduction strategies for a metropolitan city: Taipei," Energy Policy, Elsevier, vol. 37(2), pages 400-406, February.
    10. Ron SANDS & Katja SCHUMACHER, "undated". "Decomposition Analysis and Climate Policy in a General Equilibrium Model of Germany," EcoMod2008 23800124, EcoMod.
    11. Fujimori, Shinichiro & Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru, 2016. "Global energy model hindcasting," Energy, Elsevier, vol. 114(C), pages 293-301.
    12. Bruninx, Kenneth & Madzharov, Darin & Delarue, Erik & D'haeseleer, William, 2013. "Impact of the German nuclear phase-out on Europe's electricity generation—A comprehensive study," Energy Policy, Elsevier, vol. 60(C), pages 251-261.
    13. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    14. Vipin Arora & Yiyong Cai, 2014. "Disaggregating Electricity Generation Technologies in CGE Models," CAMA Working Papers 2014-54, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Tabatabaei, Sharareh Majdzadeh & Hadian, Ebrahim & Marzban, Hossein & Zibaei, Mansour, 2017. "Economic, welfare and environmental impact of feed-in tariff policy: A case study in Iran," Energy Policy, Elsevier, vol. 102(C), pages 164-169.
    16. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    17. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    18. Zhang, Guoqiang & Yang, Yongping & Jin, Hongguang & Xu, Gang & Zhang, Kai, 2013. "Proposed combined-cycle power system based on oxygen-blown coal partial gasification," Applied Energy, Elsevier, vol. 102(C), pages 735-745.
    19. Thure Traber & Thure Traber & Claudia Kemfert, "undated". "Future European Electricity Technologies under Emission Trading: The Potential Role of Fossil Fuels and Carbon Capture and Sequestration (CCS)," Energy and Environmental Modeling 2007 24000060, EcoMod.
    20. Janne Kettunen, Derek W. Bunn and William Blyth & Derek W. Bunn & William Blyth, 2011. "Investment Propensities under Carbon Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 77-118.

Articles

  1. Carol A. Jones & Ronald D. Sands, 2013. "Impact of Agricultural Productivity Gains on Greenhouse Gas Emissions: A Global Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1309-1316.

    Cited by:

    1. Ronald D. Sands, Katja Schumacher, and Hannah Forster, 2014. "U.S. CO2 Mitigation in a Global Context: Welfare, Trade and Land Use," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Pires, Marcel V. & Cunha, Denis A. & Faria, Raiza M. & Lindemann, Douglas, 2015. "Nitrogen use (in)efficiency and cereal production in Brazil: current trends and forecasts," 2015 Conference, August 9-14, 2015, Milan, Italy 212709, International Association of Agricultural Economists.

  2. Jayson Beckman & Carol Adaire Jones & Ronald Sands, 2011. "A Global General Equilibrium Analysis of Biofuel Mandates and Greenhouse Gas Emissions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 334-341.

    Cited by:

    1. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    2. Ronald D. Sands, Katja Schumacher, and Hannah Forster, 2014. "U.S. CO2 Mitigation in a Global Context: Welfare, Trade and Land Use," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    3. Mochizuki, Junko & Coffman, Makena & Yanagida, John F., 2015. "Market, welfare and land-use implications of lignocellulosic bioethanol in Hawai'i," Renewable Energy, Elsevier, vol. 76(C), pages 102-114.
    4. Banse, Martin & Junker, Franziska & Prins, Anne Gerdien & Stehfest, Elke & Tabeau, Andrzej A. & Woltjer, Geert B. & van Meijl, Hans, 2012. "Biofuel do Brasil? - Impact of Multinational Biofuel Mandates on Agri-food Trade," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 123838, International Association of Agricultural Economists.
    5. Ben Fradj, Nosra & Aghajanzadeh-Darzi, Parisa & Jayet, Pierre-Alain, 2012. "Perennial crops in European farming systems and land use change: a model assessment," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126781, International Association of Agricultural Economists.
    6. Junko Mochizuki & John F. Yanagida & Makena Coffman, 2013. "Market, Welfare and Land-Use Implications of Lignocellulosic Bioethanol in HawaiÔi," Working Papers 2013-10, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.

  3. Kenneth Gillingham & Steven Smith & Ronald Sands, 2008. "Impact of bioenergy crops in a carbon dioxide constrained world: an application of the MiniCAM energy-agriculture and land use model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(7), pages 675-701, August.

    Cited by:

    1. Favero, Alice & Massetti, Emanuele, 2014. "Trade of woody biomass for electricity generation under climate mitigation policy," Resource and Energy Economics, Elsevier, vol. 36(1), pages 166-190.
    2. Katherine Calvin & Marshall Wise & Page Kyle & Pralit Patel & Leon Clarke & Jae Edmonds, 2014. "Trade-offs of different land and bioenergy policies on the path to achieving climate targets," Climatic Change, Springer, vol. 123(3), pages 691-704, April.
    3. Alice Favero & Robert Mendelsohn & Brent Sohngen, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," Working Papers 2016.09, Fondazione Eni Enrico Mattei.
    4. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2016. "Global trade impacts of increasing Europe's bioenergy demand," Journal of Forest Economics, Elsevier, vol. 23(C), pages 27-44.
    5. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    6. Calvin, Katherine & Wise, Marshall & Clarke, Leon & Edmonds, James & Jones, Andrew & Thomson, Allison, 2014. "Near-term limits to mitigation: Challenges arising from contrary mitigation effects from indirect land-use change and sulfur emissions," Energy Economics, Elsevier, vol. 42(C), pages 233-239.
    7. U. Martin Persson, 2015. "The impact of biofuel demand on agricultural commodity prices: a systematic review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 410-428, September.
    8. Yeh, Sonia & Sperling, Daniel, 2010. "Low carbon fuel standards: Implementation scenarios and challenges," Energy Policy, Elsevier, vol. 38(11), pages 6955-6965, November.
    9. Nasiri, Fuzhan & Zaccour, Georges, 2009. "An exploratory game-theoretic analysis of biomass electricity generation supply chain," Energy Policy, Elsevier, vol. 37(11), pages 4514-4522, November.

  4. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
    See citations under working paper version above.
  5. Schumacher, Katja & Sands, Ronald D., 2006. "Innovative energy technologies and climate policy in Germany," Energy Policy, Elsevier, vol. 34(18), pages 3929-3941, December.
    See citations under working paper version above.
  6. Allen A. Fawcett and Ronald D. Sands, 2006. "Non-CO2 Greenhouse Gases in the Second Generation Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 305-322.

    Cited by:

    1. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
    2. Ron SANDS & Katja SCHUMACHER, "undated". "Decomposition Analysis and Climate Policy in a General Equilibrium Model of Germany," EcoMod2008 23800124, EcoMod.

  7. Sands, Ronald D., 2004. "Dynamics of carbon abatement in the Second Generation Model," Energy Economics, Elsevier, vol. 26(4), pages 721-738, July.

    Cited by:

    1. Praetorius, Barbara & Schumacher, Katja, 2009. "Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage," Energy Policy, Elsevier, vol. 37(12), pages 5081-5093, December.
    2. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    3. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2014. "Development of a global computable general equilibrium model coupled with detailed energy end-use technology," Applied Energy, Elsevier, vol. 128(C), pages 296-306.
    4. Katja Schumacher & Ronald D. Sands, 2006. "Where Are the Industrial Technologies in Energy-Economy Models?: An Innovative CGE Approach for Steel Production in Germany," Discussion Papers of DIW Berlin 605, DIW Berlin, German Institute for Economic Research.
    5. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    6. Jacoby, Henry D. & Reilly, John M. & McFarland, James R. & Paltsev, Sergey, 2006. "Technology and technical change in the MIT EPPA model," Energy Economics, Elsevier, vol. 28(5-6), pages 610-631, November.
    7. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    8. Auffhammer, Maximilian, 2007. "The rationality of EIA forecasts under symmetric and asymmetric loss," Resource and Energy Economics, Elsevier, vol. 29(2), pages 102-121, May.
    9. Vipin Arora & Yiyong Cai, 2014. "Disaggregating Electricity Generation Technologies in CGE Models," CAMA Working Papers 2014-54, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Katja Schumacher & Ronald D. Sands, 2005. "Innovative Energy Technologies and Climate Policy in Germany," Discussion Papers of DIW Berlin 509, DIW Berlin, German Institute for Economic Research.
    11. McFarland, James R. & Paltsev, Sergey & Jacoby, Henry D., 2009. "Analysis of the Coal Sector under Carbon Constraints," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 404-424, May.
    12. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2014. "Abating CO2 emissions in the Greek energy and industry sectors," MPRA Paper 60807, University Library of Munich, Germany.
    13. Chris Bataille, Mark Jaccard, John Nyboer and Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 93-112.
    14. Donald Larson & Gunnar Breustedt, 2009. "Will Markets Direct Investments Under the Kyoto Protocol? Lessons from the Activities Implemented Jointly Pilots," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 433-456, July.
    15. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.

  8. Dhazn Gillig & Bruce McCarl & Ronald Sands, 2004. "Integrating agricultural and forestry GHG mitigation response into general economy frameworks: Developing a family of response functions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(3), pages 241-259, July.

    Cited by:

    1. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    2. Carlo Giupponi & Francesco Bosello & Andrea Povellato, 2007. "A Review of Recent Studies on Cost Effectiveness of GHG Mitigation Measures in the European Agro-Forestry Sector," Working Papers 2007.14, Fondazione Eni Enrico Mattei.

  9. Christopher N. MacCracken & James A. Edmonds & Son H. Kim & Ronald D. Sands, 1999. "The Economics of the Kyoto Protocol," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 25-71.

    Cited by:

    1. Zhang, ZhongXiang, 2001. "An economic assessment of the Kyoto Protocol using a global model based on the marginal abatement costs of 12 regions," MPRA Paper 13148, University Library of Munich, Germany.
    2. Dalton, Michael & O'Neill, Brian & Prskawetz, Alexia & Jiang, Leiwen & Pitkin, John, 2008. "Population aging and future carbon emissions in the United States," Energy Economics, Elsevier, vol. 30(2), pages 642-675, March.
    3. Yi-Ming Wei & Zhi-Fu Mi & Zhiming Huang, 2014. "Climate policy modeling: An online SCI-E and SSCI based literature review," CEEP-BIT Working Papers 58, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    4. Juliann Allison, 2005. "Distributed Generation of Electricity: The Role of Academic Research and Advice in California’s “Clean DG” Policy Network," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 5(4), pages 405-414, December.
    5. Uwe A. Schneider & Bruce A. McCarl, 2001. "Economic Potential of Biomass-Based Fuels for Greenhouse Gas Emission Mitigation," Center for Agricultural and Rural Development (CARD) Publications 01-wp280, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, Elsevier.
    7. S. Niggol Seo, 2013. "Economics of global warming as a global public good: Private incentives and smart adaptations," Regional Science Policy & Practice, Wiley Blackwell, vol. 5(1), pages 83-95, March.
    8. ZhongXiang Zhang, 2000. "Estimating the size of the potential market for the Kyoto flexibility mechanisms," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 136(3), pages 491-521, September.
    9. S. Niggol Seo, 2017. "Beyond the Paris Agreement: Climate change policy negotiations and future directions," Regional Science Policy & Practice, Wiley Blackwell, vol. 9(2), pages 121-140, June.
    10. Meredydd Evans & Susan Legro & Ilya Popov, 2000. "The Climate for Joint Implementation: Case Studies from Russia, Ukraine, and Poland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(4), pages 319-336, December.
    11. Gillingham, Kenneth T. & Newell, Richard G. & Pizer, William A., 2007. "Modeling Endogenous Technological Change for Climate Policy Analysis," Discussion Papers dp-07-14, Resources For the Future.
    12. Andreas Löschel & Zhong Zhang, 2002. "The economic and environmental implications of the US repudiation of the kyoto protocol and the subsequent deals in Bonn and Marrakech," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 138(4), pages 711-746, December.
    13. Ron SANDS & Katja SCHUMACHER, "undated". "Decomposition Analysis and Climate Policy in a General Equilibrium Model of Germany," EcoMod2008 23800124, EcoMod.
    14. Butt, Tanveer & McCarl, Bruce, 2005. "Implications of Carbon Sequestration for Landowners," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers.
    15. Christoph Böhringer & Thomas F. Rutherford & Marco Springmann, 2013. "Clean-Development Investments: An Incentive-Compatible CGE Modelling Framework," Working Papers V-354-13, University of Oldenburg, Department of Economics, revised Mar 2013.
    16. Zhang, ZhongXiang, 1999. "Estimating the size of the potential market for all three flexibility mechanisms under the Kyoto Protocol," MPRA Paper 13088, University Library of Munich, Germany.
    17. Bohringer, Christoph & Loschel, Andreas, 2006. "Computable general equilibrium models for sustainability impact assessment: Status quo and prospects," Ecological Economics, Elsevier, vol. 60(1), pages 49-64, November.
    18. Zhang, ZhongXiang, 2004. "Meeting the Kyoto targets: the importance of developing country participation," Journal of Policy Modeling, Elsevier, vol. 26(1), pages 3-19, January.
    19. Springmann, Marco & Böhringer, Christoph & Rutherford, Thomas F., 2013. "Clean-development investments: an incentive-compatible CGE modeling framework," Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79939, Verein für Socialpolitik / German Economic Association.
    20. Pan, Haoran & Regemorter, Denise Van, 2004. "The costs and benefits of early action before Kyoto compliance," Energy Policy, Elsevier, vol. 32(13), pages 1477-1486, September.
    21. Allison, Juliann Emmons & Lents, Jim, 2002. "Encouraging distributed generation of power that improves air quality: can we have our cake and eat it too?," Energy Policy, Elsevier, vol. 30(9), pages 737-752, July.
    22. Sands, Ronald D., 2004. "Dynamics of carbon abatement in the Second Generation Model," Energy Economics, Elsevier, vol. 26(4), pages 721-738, July.
    23. Springer, Urs, 2003. "The market for tradable GHG permits under the Kyoto Protocol: a survey of model studies," Energy Economics, Elsevier, vol. 25(5), pages 527-551, September.
    24. Khanna, Neha, 2001. "Analyzing the economic cost of the Kyoto protocol," Ecological Economics, Elsevier, vol. 38(1), pages 59-69, July.
    25. Katja Schumacher & Ronald D. Sands, 2005. "Innovative Energy Technologies and Climate Policy in Germany," Discussion Papers of DIW Berlin 509, DIW Berlin, German Institute for Economic Research.
    26. Ribera, Luis & McCarl, Bruce & Zenteno, Joaquin, 2009. "Carbon Sequestration: a Potential Source of Income for Farmers," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers.
    27. Marc VIELLE & Laurent VIGUIER & Alain HAURIE & Alain BERNARD, "undated". "A Two-level Computable Equilibrium Model to Assess the Strategic Allocation of Emission Allowances Within the European Union," EcoMod2004 330600153, EcoMod.
    28. Holtsmark, Bjart & Maestad, Ottar, 2002. "Emission trading under the Kyoto Protocol--effects on fossil fuel markets under alternative regimes," Energy Policy, Elsevier, vol. 30(3), pages 207-218, February.
    29. Oladosu, Gbadebo & Rose, Adam, 2007. "Income distribution impacts of climate change mitigation policy in the Susquehanna River Basin Economy," Energy Economics, Elsevier, vol. 29(3), pages 520-544, May.
    30. Zhou, Mo, 2015. "Adapting sustainable forest management to climate policy uncertainty: A conceptual framework," Forest Policy and Economics, Elsevier, vol. 59(C), pages 66-74.

  10. Scott, Michael J. & Sands, Ronald D. & Edmonds, Jae & Liebetrau, Albert M. & Engel, David W., 1999. "Uncertainty in integrated assessment models: modeling with MiniCAM 1.0," Energy Policy, Elsevier, vol. 27(14), pages 855-879, December.

    Cited by:

    1. Caselles-Moncho, Antonio & Ferrandiz-Serrano, Liliana & Peris-Mora, Eduardo, 2006. "Dynamic simulation model of a coal thermoelectric plant with a flue gas desulphurisation system," Energy Policy, Elsevier, vol. 34(18), pages 3812-3826, December.
    2. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    3. DURAND-LASSERVE, Olivier & PIERRU, Axel & SMEERS, Yves, 2011. "Effects of the uncertainty about global economic recovery on energy transition and CO2 price," CORE Discussion Papers 2011028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Baker, Erin, 2005. "Uncertainty and learning in a strategic environment: global climate change," Resource and Energy Economics, Elsevier, vol. 27(1), pages 19-40, January.
    5. Webster, Mort & Sue Wing, Ian & Jakobovits, Lisa, 2010. "Second-best instruments for near-term climate policy: Intensity targets vs. the safety valve," Journal of Environmental Economics and Management, Elsevier, vol. 59(3), pages 250-259, May.
    6. Peterson, Sonja, 2004. "The contribution of economics to the analysis of climate change and uncertainty: a survey of approaches and findings," Kiel Working Papers 1212, Kiel Institute for the World Economy (IfW).
    7. McJeon, Haewon C. & Clarke, Leon & Kyle, Page & Wise, Marshall & Hackbarth, Andrew & Bryant, Benjamin P. & Lempert, Robert J., 2011. "Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios?," Energy Economics, Elsevier, vol. 33(4), pages 619-631, July.
    8. Michel, David, 2009. "Foxes, hedgehogs, and greenhouse governance: Knowledge, uncertainty, and international policy-making in a warming World," Applied Energy, Elsevier, vol. 86(2), pages 258-264, February.
    9. Peterson, Sonja, 2006. "Uncertainty and economic analysis of climate change: a survey of approaches and findings," Open Access Publications from Kiel Institute for the World Economy 3778, Kiel Institute for the World Economy (IfW).
    10. Scott, Michael J. & Daly, Don S. & Zhou, Yuyu & Rice, Jennie S. & Patel, Pralit L. & McJeon, Haewon C. & Page Kyle, G. & Kim, Son H. & Eom, Jiyong & Clarke, Leon E., 2014. "Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technological, and socioeconomic futures in a regional integr," Energy Economics, Elsevier, vol. 43(C), pages 22-33.
    11. Webster, Mort & Cho, Cheol-Hung, 2006. "Analysis of variability and correlation in long-term economic growth rates," Energy Economics, Elsevier, vol. 28(5-6), pages 653-666, November.
    12. Mort Webster & Nidhi Santen & Panos Parpas, 2012. "An approximate dynamic programming framework for modeling global climate policy under decision-dependent uncertainty," Computational Management Science, Springer, vol. 9(3), pages 339-362, August.
    13. Webster, Mort & Paltsev, Sergey & Reilly, John, 2008. "Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?," Energy Economics, Elsevier, vol. 30(6), pages 2785-2798, November.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 4 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENV: Environmental Economics (3) 2008-04-12 2011-05-24 2013-06-24
  2. NEP-CMP: Computational Economics (2) 2006-07-28 2013-06-24
  3. NEP-ENE: Energy Economics (2) 2006-07-28 2008-04-12
  4. NEP-AGR: Agricultural Economics (1) 2008-04-12

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Ronald Douglas Sands should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.