IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Modeling a Dynamic Forest Sector in a General Equilibrium Framework

  • Tian, Xiaohui
  • Sohngen, Brent
  • Sands, Ronald

We develop a dynamic forest sector in a Computable General Equilibrium model. There has been an increasing demand in using general equilibrium models to examine forests' role in climate change mitigation, global land competition and the energy sector. But modeling forestry sector in a general equilibrium context remains an extremely difficult task due to the complex dynamics in forestry management and timer markets. The innovation of this study lies in introducing a land-based and dynamic forest sector and incorporating rational expectations in all the sectors.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Agricultural and Applied Economics Association in its series 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. with number 149990.

in new window

Date of creation: 31 May 2013
Date of revision:
Handle: RePEc:ags:aaea13:149990
Contact details of provider: Postal: 555 East Wells Street, Suite 1100, Milwaukee, Wisconsin 53202
Phone: (414) 918-3190
Fax: (414) 276-3349
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
  2. Golub, Alla & Hertel, Thomas & Sohngen, Brent, 2008. "Land Use Modeling in Recursively-Dynamic GTAP Framework," GTAP Working Papers 2609, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
  3. Sohngen, Brent & Golub, Alla & Hertel, Thomas, 2008. "The Role of Forestry in Carbon Sequestration in General Equilibrium Models," GTAP Working Papers 2610, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
  4. Sands, Ronald & Kim, Man-Keun, 2008. "Modeling the Competition for Land: Methods and Application to Climate Policy," GTAP Working Papers 2606, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ags:aaea13:149990. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.