IDEAS home Printed from
   My bibliography  Save this article

Additional CO2 emissions from land use change — Forest conservation as a precondition for sustainable production of second generation bioenergy


  • Popp, Alexander
  • Krause, Michael
  • Dietrich, Jan Philipp
  • Lotze-Campen, Hermann
  • Leimbach, Marian
  • Beringer, Tim
  • Bauer, Nico


In the past, deforestation, mainly driven by the conversion of natural forests to agricultural land, contributed up to one-fifth of global human induced carbon dioxide (CO2) emissions. Substitution of bioenergy for fossil energy is an intensely discussed option for mitigating CO2 emissions. This paper, by applying a global land-use model and a global energy–economy–climate model, explores how demand for cellulosic bioenergy crops will add an additional pressure on the land system in the future. In accordance with other studies, we find that CO2 emissions from land use change due to energy crop production will be an important factor in the GHG balance of bioenergy if natural forests will not be protected. But restricting land availability for biomass plantations by conserving natural forests requires additional efforts in the agricultural sector: First, our simulation results indicate that significant additional crop yield increases will be needed due to the combination of forest conservation and the cultivation of dedicated bioenergy crops. Secondly, our simulation results show that forest conservation in combination with increasing demand for dedicated bioenergy crops will lead to higher agricultural production costs of approximately 20%.

Suggested Citation

  • Popp, Alexander & Krause, Michael & Dietrich, Jan Philipp & Lotze-Campen, Hermann & Leimbach, Marian & Beringer, Tim & Bauer, Nico, 2012. "Additional CO2 emissions from land use change — Forest conservation as a precondition for sustainable production of second generation bioenergy," Ecological Economics, Elsevier, vol. 74(C), pages 64-70.
  • Handle: RePEc:eee:ecolec:v:74:y:2012:i:c:p:64-70
    DOI: 10.1016/j.ecolecon.2011.11.004

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    2. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    3. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    4. Nico Bauer & Ottmar Edenhofer & Socrates Kypreos, 2008. "Linking energy system and macroeconomic growth models," Computational Management Science, Springer, vol. 5(1), pages 95-117, February.
    5. Marian Leimbach, Nico Bauer, Lavinia Baumstark, Michael Luken and Ottmar Edenhofer, 2010. "Technological Change and International Trade - Insights from REMIND-R," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    6. Detlef P. van Vuuren, Elie Bellevrat, Alban Kitous and Morna Isaac, 2010. "Bio-Energy Use and Low Stabilization Scenarios," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Avelino Gonçalves, Fabiano & dos Santos, Everaldo Silvino & de Macedo, Gorete Ribeiro, 2015. "Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1287-1303.
    2. Katherine Calvin & Marshall Wise & Patrick Luckow & Page Kyle & Leon Clarke & Jae Edmonds, 2016. "Implications of uncertain future fossil energy resources on bioenergy use and terrestrial carbon emissions," Climatic Change, Springer, vol. 136(1), pages 57-68, May.
    3. Marshall A. Wise, Haewon C. McJeon, Katherine V. Calvin, Leon E. Clarke, and Page Kyle, 2014. "Assessing the Interactions among U.S. Climate Policy, Biomass Energy, and Agricultural Trade," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    4. Wang, Xiaoxi & Biewald, Anne & Dietrich, Jan Philipp & Schmitz, Christoph & Lotze-Campen, Hermann & Humpenöder, Florian & Bodirsky, Benjamin Leon & Popp, Alexander, 2016. "Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns," Ecological Economics, Elsevier, vol. 122(C), pages 12-24.
    5. Katherine Calvin & Marshall Wise & Page Kyle & Pralit Patel & Leon Clarke & Jae Edmonds, 2014. "Trade-offs of different land and bioenergy policies on the path to achieving climate targets," Climatic Change, Springer, vol. 123(3), pages 691-704, April.
    6. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    7. Kuchler, Magdalena, 2014. "Sweet dreams (are made of cellulose): Sociotechnical imaginaries of second-generation bioenergy in the global debate," Ecological Economics, Elsevier, vol. 107(C), pages 431-437.
    8. Colinet, María J. & Cansino, José M. & González-Limón, José M. & Ordóñez, Manuel, 2014. "Toward a less natural gas dependent energy mix in Spain: Crowding-out effects of shifting to biomass power generation," Utilities Policy, Elsevier, vol. 31(C), pages 29-35.
    9. Otto, Sander A.C. & Gernaat, David E.H.J. & Isaac, Morna & Lucas, Paul L. & van Sluisveld, Mariësse A.E. & van den Berg, Maarten & van Vliet, Jasper & van Vuuren, Detlef P., 2015. "Impact of fragmented emission reduction regimes on the energy market and on CO2 emissions related to land use: A case study with China and the European Union as first movers," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 220-229.
    10. Alexander Popp & Steven Rose & Katherine Calvin & Detlef Vuuren & Jan Dietrich & Marshall Wise & Elke Stehfest & Florian Humpenöder & Page Kyle & Jasper Vliet & Nico Bauer & Hermann Lotze-Campen & Dav, 2014. "Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options," Climatic Change, Springer, vol. 123(3), pages 495-509, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:74:y:2012:i:c:p:64-70. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.