IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

How big is leakage from forestry carbon credits? Estimates from a Global Model

  • Acosta, Montserrat
  • Sohngen, Brent

There is widespread recognition that forestry carbon credits can reduce the net emissions of carbon into the atmosphere. Designing systems to sequester carbon, however, has proven difficult due to a number of efficiency issues, including leakage. Leakage occurs when policy makers develop carbon projects in specific places which protect some parcels of land, but leave other parcels of land unprotected. This analysis uses a newly developed model of global land use change from an established forestry and land use model, described in Sohngen et al. (1999); Sohngen and Mendelsohn (2003); and Kindermann et al. (2008). To assess leakage we estimate carbon under storage under one scenario where the world is awarded carbon credits and another where tropical developing nations are awarded the credits. We focus our results on several regions, namely Brazil, the rest of South America, Sub-Saharan Africa and Southeast Asia. Carbon prices are assumed to be constant, and range from US$0 tC to US$900 tC. The model adjusts global land uses to these specific policies, and leakage is assessed by comparing carbon gains within the project areas to net global changes in carbon. A number of policy relevant results emerge. First, the estimates indicate that leakage ranges from 2% to more than 14%. Second, as carbon credits increase, leakage decreases across the world.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Agricultural and Applied Economics Association in its series 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin with number 49468.

in new window

Date of creation: 2009
Date of revision:
Handle: RePEc:ags:aaea09:49468
Contact details of provider: Postal: 555 East Wells Street, Suite 1100, Milwaukee, Wisconsin 53202
Phone: (414) 918-3190
Fax: (414) 276-3349
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Brian C. Murray & Bruce A. McCarl & Heng-Chi Lee, 2004. "Estimating Leakage from Forest Carbon Sequestration Programs," Land Economics, University of Wisconsin Press, vol. 80(1), pages 109-124.
  2. Sedjo, Roger, 1999. "Potential for Carbon Forest Plantation in Marginal Timber Forests: The Case of Patagonia, Argentina," Discussion Papers dp-99-27, Resources For the Future.
  3. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
  4. Massimo Tavoni & Valentina Bosetti & Brent Sohngen, 2007. "Forestry and the Carbon Market Response to Stabilize Climate," Working Papers 2007.15, Fondazione Eni Enrico Mattei.
  5. Bellassen, Valentin & Gitz, Vincent, 2008. "Reducing Emissions from Deforestation and Degradation in Cameroon -- Assessing costs and benefits," Ecological Economics, Elsevier, vol. 68(1-2), pages 336-344, December.
  6. Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2006. "The Role of Global Land Use in Determining Greenhouse Gases Mitigation Costs," GTAP Working Papers 2230, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
  7. Gan, Jianbang & McCarl, Bruce A., 2007. "Measuring transnational leakage of forest conservation," Ecological Economics, Elsevier, vol. 64(2), pages 423-432, December.
  8. V. Bellassen & V. Gitz, 2008. "Reducing Emissions from Deforestation and Degradation in Cameroon - Assessing costs and benefits," Post-Print hal-00716370, HAL.
  9. Adam J. Daigneault & Mario J. Miranda & Brent Sohngen, 2010. "Optimal Forest Management with Carbon Sequestration Credits and Endogenous Fire Risk," Land Economics, University of Wisconsin Press, vol. 86(1), pages 155-172.
  10. Brent Sohngen & Robert Mendelsohn & Roger Sedjo, 1999. "Forest Management, Conservation, and Global Timber Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 1-13.
  11. Lee, Huey-Lin & Thomas Hertel & Brent Sohngen & Navin Ramankutty, 2005. "Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation," GTAP Technical Papers 1900, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
  12. N. Wear, David & Murray, Brian C., 2004. "Federal timber restrictions, interregional spillovers, and the impact on US softwood markets," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 307-330, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ags:aaea09:49468. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.