IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2739-d161751.html
   My bibliography  Save this article

Sustainability Assessment of Bioenergy from a Global Perspective: A Review

Author

Listed:
  • Jianliang Wang

    (School of Business Administration, China University of Petroleum, Beijing 102249, China)

  • Yuru Yang

    (School of Business Administration, China University of Petroleum, Beijing 102249, China)

  • Yongmei Bentley

    (Business School, University of Bedfordshire, Luton LU1 3JU, UK)

  • Xu Geng

    (School of Business Administration, China University of Petroleum, Beijing 102249, China)

  • Xiaojie Liu

    (Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Bioenergy, as a renewable energy resource, is expected to see significant development in the future. However, a key issue that will affect this trend is sustainability of bioenergy. There have been many studies on this topic but mainly focusing on only one or two-dimensions of the issue and also with much of the literature directed at studies of European regions. To help understand the wider scope of bioenergy sustainability, this paper reviews a broad range of current research on the topic and places the literature into a multi-dimensional framework covering the economic, environmental and ecological, social and land-related aspects of bioenergy sustainability, as well as a geographical analysis of the areas for which the studies have been carried out. The review indicates that it is hard to draw an overall conclusion on the sustainability of bioenergy because of limited studies or contradictory results in some respects. In addition, this review shows that crop-based bioenergy and forest bioenergy are seen as the main sources of bioenergy and that most studies discuss the final utilization of bioenergy as being for electricity generation. Finally, research directions for future study are suggested, based on the literature reviewed here.

Suggested Citation

  • Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2739-:d:161751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    2. Yang, Qing & Liang, Ji & Li, Jiashuo & Yang, Haiping & Chen, Hanping, 2018. "Life cycle water use of a biomass-based pyrolysis polygeneration system in China," Applied Energy, Elsevier, vol. 224(C), pages 469-480.
    3. Buchholz, Thomas S. & Volk, Timothy A. & Luzadis, Valerie A., 2007. "A participatory systems approach to modeling social, economic, and ecological components of bioenergy," Energy Policy, Elsevier, vol. 35(12), pages 6084-6094, December.
    4. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    5. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    6. Glithero, N.J. & Ramsden, S.J. & Wilson, P., 2012. "Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches," Agricultural Systems, Elsevier, vol. 109(C), pages 53-64.
    7. Namsaraev, Z.B. & Gotovtsev, P.M. & Komova, A.V. & Vasilov, R.G., 2018. "Current status and potential of bioenergy in the Russian Federation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 625-634.
    8. Manos, Basil & Partalidou, Maria & Fantozzi, Francesco & Arampatzis, Stratos & Papadopoulou, Olympia, 2014. "Agro-energy districts contributing to environmental and social sustainability in rural areas: Evaluation of a local public–private partnership scheme in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 85-95.
    9. Shane, Agabu & Gheewala, Shabbir H. & Fungtammasan, Bundit & Silalertruksa, Thapat & Bonnet, Sébastien & Phiri, Seveliano, 2016. "Bioenergy resource assessment for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 93-104.
    10. Alsaleh, Mohd & Abdul-Rahim, A.S. & Mohd-Shahwahid, H.O., 2017. "An empirical and forecasting analysis of the bioenergy market in the EU28 region: Evidence from a panel data simultaneous equation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1123-1137.
    11. Chitawo, Maxon L. & Chimphango, Annie F.A., 2017. "A synergetic integration of bioenergy and rice production in rice farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 58-67.
    12. van Dam, J. & Junginger, M. & Faaij, A.P.C., 2010. "From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2445-2472, December.
    13. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    14. Popp, Alexander & Krause, Michael & Dietrich, Jan Philipp & Lotze-Campen, Hermann & Leimbach, Marian & Beringer, Tim & Bauer, Nico, 2012. "Additional CO2 emissions from land use change — Forest conservation as a precondition for sustainable production of second generation bioenergy," Ecological Economics, Elsevier, vol. 74(C), pages 64-70.
    15. Liu, Tingting & Huffman, Ted & Kulshreshtha, Suren & McConkey, Brian & Du, Yuneng & Green, Melodie & Liu, Jiangui & Shang, Jiali & Geng, Xiaoyuan, 2017. "Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts," Applied Energy, Elsevier, vol. 205(C), pages 477-485.
    16. Wise, Marshall & Hodson, Elke L. & Mignone, Bryan K. & Clarke, Leon & Waldhoff, Stephanie & Luckow, Patrick, 2015. "An approach to computing marginal land use change carbon intensities for bioenergy in policy applications," Energy Economics, Elsevier, vol. 50(C), pages 337-347.
    17. Akbi, Amine & Saber, Meryem & Aziza, Majda & Yassaa, Noureddine, 2017. "An overview of sustainable bioenergy potential in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 240-245.
    18. Mangoyana, Robert B. & Smith, Timothy F., 2011. "Decentralised bioenergy systems: A review of opportunities and threats," Energy Policy, Elsevier, vol. 39(3), pages 1286-1295, March.
    19. Junginger, Martin & van Dam, Jinke & Zarrilli, Simonetta & Ali Mohamed, Fatin & Marchal, Didier & Faaij, Andre, 2011. "Opportunities and barriers for international bioenergy trade," Energy Policy, Elsevier, vol. 39(4), pages 2028-2042, April.
    20. Amigun, Bamikole & Musango, Josephine Kaviti & Stafford, William, 2011. "Biofuels and sustainability in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1360-1372, February.
    21. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    22. Zhang, Jianjun & Chen, Yang & Rao, Yongheng & Fu, Meichen & Prishchepov, Alexander V., 2017. "Alternative spatial allocation of suitable land for biofuel production in China," Energy Policy, Elsevier, vol. 110(C), pages 631-643.
    23. German, Laura & Schoneveld, George, 2012. "A review of social sustainability considerations among EU-approved voluntary schemes for biofuels, with implications for rural livelihoods," Energy Policy, Elsevier, vol. 51(C), pages 765-778.
    24. Fuess, Lucas Tadeu & Klein, Bruno Colling & Chagas, Mateus Ferreira & Alves Ferreira Rezende, Mylene Cristina & Garcia, Marcelo Loureiro & Bonomi, Antonio & Zaiat, Marcelo, 2018. "Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach," Renewable Energy, Elsevier, vol. 122(C), pages 674-687.
    25. Söderberg, Charlotta & Eckerberg, Katarina, 2013. "Rising policy conflicts in Europe over bioenergy and forestry," Forest Policy and Economics, Elsevier, vol. 33(C), pages 112-119.
    26. Kalt, Gerald & Kranzl, Lukas, 2011. "Assessing the economic efficiency of bioenergy technologies in climate mitigation and fossil fuel replacement in Austria using a techno-economic approach," Applied Energy, Elsevier, vol. 88(11), pages 3665-3684.
    27. Silva Lora, Electo E. & Escobar Palacio, José C. & Rocha, Mateus H. & Grillo Renó, Maria L. & Venturini, Osvaldo J. & Almazán del Olmo, Oscar, 2011. "Issues to consider, existing tools and constraints in biofuels sustainability assessments," Energy, Elsevier, vol. 36(4), pages 2097-2110.
    28. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    29. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    30. Scarlat, Nicolae & Dallemand, Jean-François, 2011. "Recent developments of biofuels/bioenergy sustainability certification: A global overview," Energy Policy, Elsevier, vol. 39(3), pages 1630-1646, March.
    31. Janssen, Rainer & Rutz, Dominik Damian, 2011. "Sustainability of biofuels in Latin America: Risks and opportunities," Energy Policy, Elsevier, vol. 39(10), pages 5717-5725, October.
    32. Umberto Di Matteo & Benedetto Nastasi & Angelo Albo & Davide Astiaso Garcia, 2017. "Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale," Energies, MDPI, vol. 10(2), pages 1-13, February.
    33. Steubing, B. & Zah, R. & Waeger, P. & Ludwig, C., 2010. "Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2256-2265, October.
    34. Scarlat, Nicolae & Dallemand, Jean-Franc¸ois & Banja, Manjola, 2013. "Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 595-606.
    35. de Santoli, Livio & Mancini, Francesco & Nastasi, Benedetto & Piergrossi, Valentina, 2015. "Building integrated bioenergy production (BIBP): Economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain," Renewable Energy, Elsevier, vol. 81(C), pages 499-508.
    36. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    37. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & L.V. Leal, Manoel Regis, 2017. "Combining an accelerated deployment of bioenergy and land use strategies: Review and insights for a post-conflict scenario in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 159-177.
    38. Ilya Gelfand & Ritvik Sahajpal & Xuesong Zhang & R. César Izaurralde & Katherine L. Gross & G. Philip Robertson, 2013. "Sustainable bioenergy production from marginal lands in the US Midwest," Nature, Nature, vol. 493(7433), pages 514-517, January.
    39. Kraxner, F. & Aoki, K. & Kindermann, G. & Leduc, S. & Albrecht, F. & Liu, J. & Yamagata, Y., 2016. "Bioenergy and the city – What can urban forests contribute?," Applied Energy, Elsevier, vol. 165(C), pages 990-1003.
    40. Mohr, Alison & Raman, Sujatha, 2013. "Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels," Energy Policy, Elsevier, vol. 63(C), pages 114-122.
    41. Wu, C.Z. & Yin, X.L. & Yuan, Z.H. & Zhou, Z.Q. & Zhuang, X.S., 2010. "The development of bioenergy technology in China," Energy, Elsevier, vol. 35(11), pages 4445-4450.
    42. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
    43. Manos, Basil & Bartocci, Pietro & Partalidou, Maria & Fantozzi, Francesco & Arampatzis, Stratos, 2014. "Review of public–private partnerships in agro-energy districts in Southern Europe: The cases of Greece and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 667-678.
    44. García, Carlos A. & Riegelhaupt, Enrique & Ghilardi, Adrián & Skutsch, Margaret & Islas, Jorge & Manzini, Fabio & Masera, Omar, 2015. "Sustainable bioenergy options for Mexico: GHG mitigation and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 545-552.
    45. Makkonen, Marika & Huttunen, Suvi & Primmer, Eeva & Repo, Anna & Hildén, Mikael, 2015. "Policy coherence in climate change mitigation: An ecosystem service approach to forests as carbon sinks and bioenergy sources," Forest Policy and Economics, Elsevier, vol. 50(C), pages 153-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihail Busu, 2019. "Assessment of the Impact of Bioenergy on Sustainable Economic Development," Energies, MDPI, vol. 12(4), pages 1-11, February.
    2. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Espinoza, Vicente Sebastian & Fontalvo, Javier & Martí-Herrero, Jaime & Miguel, Luis Javier & Mediavilla, Margarita, 2022. "Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable?," Energy, Elsevier, vol. 259(C).
    4. Obal, Thalita Monteiro & de Souza, Jovani Taveira & de Jesus, Rômulo Henrique Gomes & de Francisco, Antonio Carlos, 2023. "Biogascluster: A clustering algorithm to identify potential partnerships between agribusiness properties," Renewable Energy, Elsevier, vol. 206(C), pages 982-993.
    5. Cosette Khawaja & Rainer Janssen & Rita Mergner & Dominik Rutz & Marco Colangeli & Lorenzo Traverso & Maria Michela Morese & Manuela Hirschmugl & Carina Sobe & Alfonso Calera & David Cifuentes & Stefa, 2021. "Viability and Sustainability Assessment of Bioenergy Value Chains on Underutilised Lands in the EU and Ukraine," Energies, MDPI, vol. 14(6), pages 1-21, March.
    6. Judit Oláh & József Popp & Szabolcs Duleba & Anna Kiss & Zoltán Lakner, 2021. "Positioning Bio-Based Energy Systems in a Hypercomplex Decision Space—A Case Study," Energies, MDPI, vol. 14(14), pages 1-23, July.
    7. Marco Ugolini & Lucia Recchia & Giulio Guandalini & Giampaolo Manzolini, 2022. "Novel Methodology to Assess Advanced Biofuel Production at Regional Level: Case Study for Cereal Straw Supply Chains," Energies, MDPI, vol. 15(19), pages 1-21, September.
    8. Tomasz Rokicki & Aleksandra Perkowska & Bogdan Klepacki & Hubert Szczepaniuk & Edyta Karolina Szczepaniuk & Stanisław Bereziński & Paulina Ziółkowska, 2020. "The Importance of Higher Education in the EU Countries in Achieving the Objectives of the Circular Economy in the Energy Sector," Energies, MDPI, vol. 13(17), pages 1-17, August.
    9. Alberto Bezama & Carlo Ingrao & Sinéad O’Keeffe & Daniela Thrän, 2019. "Resources, Collaborators, and Neighbors: The Three-Pronged Challenge in the Implementation of Bioeconomy Regions," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    10. M. Jean Blair & Bruno Gagnon & Andrew Klain & Biljana Kulišić, 2021. "Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals," Land, MDPI, vol. 10(2), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
    2. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. García, Carlos A. & Manzini, Fabio & Islas, Jorge M., 2017. "Sustainability assessment of ethanol production from two crops in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1199-1207.
    4. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    6. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Akincza, Marta, 2020. "Bioenergy technologies and biomass potential vary in Northern European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    8. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    9. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    10. repec:aud:audfin:v:21:y:2019:i:50:p:75 is not listed on IDEAS
    11. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    12. German, Laura & Goetz, Ariane & Searchinger, Tim & Oliveira, Gustavo de L.T. & Tomei, Julia & Hunsberger, Carol & Weigelt, Jes, 2017. "Sine Qua Nons of sustainable biofuels: Distilling implications of under-performance for national biofuel programs," Energy Policy, Elsevier, vol. 108(C), pages 806-817.
    13. de Man, Reinier & German, Laura, 2017. "Certifying the sustainability of biofuels: Promise and reality," Energy Policy, Elsevier, vol. 109(C), pages 871-883.
    14. Oliveira, Gustavo de L.T. & McKay, Ben & Plank, Christina, 2017. "How biofuel policies backfire: Misguided goals, inefficient mechanisms, and political-ecological blind spots," Energy Policy, Elsevier, vol. 108(C), pages 765-775.
    15. Bracco, Stefania, 2015. "Effectiveness of EU biofuels sustainability criteria in the context of land acquisitions in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 130-143.
    16. Renzaho, Andre M.N. & Kamara, Joseph K. & Toole, Michael, 2017. "Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 503-516.
    17. Holland, Robert A. & Scott, Kate & Hinton, Emma D. & Austen, Melanie C. & Barrett, John & Beaumont, Nicola & Blaber-Wegg, Tina & Brown, Gareth & Carter-Silk, Eleanor & Cazenave, Pierre & Eigenbrod, Fe, 2016. "Bridging the gap between energy and the environment," Energy Policy, Elsevier, vol. 92(C), pages 181-189.
    18. Goetz, Ariane & German, Laura & Hunsberger, Carol & Schmidt, Oscar, 2017. "Do no harm? Risk perceptions in national bioenergy policies and actual mitigation performance," Energy Policy, Elsevier, vol. 108(C), pages 776-790.
    19. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    20. Karel Janda & Ladislav Kristoufek & David Zilberman, 2012. "Biofuels: policies and impacts," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 58(8), pages 372-386.
    21. Fabián Almonacid, 2018. "Bioenergy in an Agroforestry Economy under Crisis: Complement and Conflict. La Araucanía, Chile, 1990–2016," Sustainability, MDPI, vol. 10(12), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2739-:d:161751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.