IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v107y2017icp164-180.html
   My bibliography  Save this article

Renewable energies cannot compete with forest carbon sequestration to cost-efficiently meet the EU carbon target for 2050

Author

Listed:
  • Münnich Vass, Miriam

Abstract

Renewable energies have great potential to contribute to CO2 emissions reductions by substituting for fossil fuels. This study examines whether renewable energies with learning-by-doing technical change can compete with forest carbon sequestration to cost-efficiently achieve the EU carbon target for 2050. Cost-efficient abatement solutions are obtained using a dynamic optimisation model that accounts for three kinds of mitigation options: renewable energies and abatement in the forest and fossil fuel sectors. The results show a net present cost of reaching the target of approximately 225 billion Euros and a carbon price of 306 Euro/ton CO2 in 2050. Furthermore, the stock of renewables in 2050 can deliver almost twice as much as the current electricity production from renewables, which implies a contribution of 8.2% to meeting the emissions target. However, the average cost per unit emissions reduction is more than twice as high for renewables as for forest carbon sequestration. Hence, the results indicate that renewables are unable to compete with forest carbon sequestration unless they receive continued government support.

Suggested Citation

  • Münnich Vass, Miriam, 2017. "Renewable energies cannot compete with forest carbon sequestration to cost-efficiently meet the EU carbon target for 2050," Renewable Energy, Elsevier, vol. 107(C), pages 164-180.
  • Handle: RePEc:eee:renene:v:107:y:2017:i:c:p:164-180
    DOI: 10.1016/j.renene.2017.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117300423
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vass, Miriam Münnich & Elofsson, Katarina, 2016. "Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050?," Journal of Forest Economics, Elsevier, vol. 24(C), pages 82-105.
    2. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    3. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    4. Bramoulle, Yann & Olson, Lars J., 2005. "Allocation of pollution abatement under learning by doing," Journal of Public Economics, Elsevier, vol. 89(9-10), pages 1935-1960, September.
    5. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    6. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    7. Lindqvist, Martin & Gren, Ing-Marie, 2013. "Cost effective nutrient abatement for the Baltic Sea under learning-by-doing induced technical change," Working Paper Series 2013:1, Swedish University of Agricultural Sciences, Department Economics.
    8. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    9. Rasmussen, Tobias N., 2001. "CO2 abatement policy with learning-by-doing in renewable energy," Resource and Energy Economics, Elsevier, vol. 23(4), pages 297-325, October.
    10. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    11. Watanabe, Chihiro, 1995. "Identification of the role of renewable energy," Renewable Energy, Elsevier, vol. 6(3), pages 237-274.
    12. Darius M. Adams & Ralph J. Alig & DBruce A. McCarl & John M. Callaway & Steven M. Winnett, 1999. "Minimum Cost Strategies for Sequestering Carbon in Forests," Land Economics, University of Wisconsin Press, vol. 75(3), pages 360-374.
    13. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    14. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    15. Alban Kitous, Patrick Criqui, Elie Bellevrat and Bertrand Chateau, 2010. "Transformation Patterns of the Worldwide Energy System - Scenarios for the Century with the POLES Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    16. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    17. Ralph Alig & Darius Adams & Bruce McCarl & J. Callaway & Steven Winnett, 1997. "Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(3), pages 259-274, April.
    18. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    19. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    20. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    21. Rose, Steven K. & Ahammad, Helal & Eickhout, Bas & Fisher, Brian & Kurosawa, Atsushi & Rao, Shilpa & Riahi, Keywan & van Vuuren, Detlef P., 2012. "Land-based mitigation in climate stabilization," Energy Economics, Elsevier, vol. 34(1), pages 365-380.
    22. Pantelis Capros & Leonidas Mantzos, 2000. "Endogenous learning in European post-Kyoto scenarios: results from applying the market equilibrium model PRIMES," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 249-261.
    23. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:107:y:2017:i:c:p:164-180. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.