IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v71y2018i3d10.1007_s10640-017-0183-y.html
   My bibliography  Save this article

Defining the Abatement Cost in Presence of Learning-by-Doing: Application to the Fuel Cell Electric Vehicle

Author

Listed:
  • Anna Creti

    (Ecole Polytechnique, Université Paris-Saclay)

  • Alena Kotelnikova

    (Ecole Polytechnique, Université Paris-Saclay)

  • Guy Meunier

    (Ecole Polytechnique, Université Paris-Saclay
    INRA-UR1303 ALISS)

  • Jean-Pierre Ponssard

    (Ecole Polytechnique, Université Paris-Saclay
    Université Paris-Saclay)

Abstract

We consider a partial equilibrium model to study the optimal phasing out of polluting goods by green goods. The unit production cost of the green goods involves convexity and learning-by-doing. The total cost for the social planner includes the private cost of production and the social cost of carbon, assumed to be exogenous and growing at the social discount rate. Under these assumptions the optimization problem can be decomposed in two questions: (i) when to launch a given schedule; (ii) at which rate the transition should be completed that is, the design of a transition schedule as such. The first question can be solved using a simple indicator interpreted as the MAC of the whole schedule, possibly non optimal. The case of hydrogen vehicle (Fuel Cell Electric Vehicles) offers an illustration of our results. Using data from the German market we show that the 2015–2050 trajectory foreseen by the industry would be consistent with a carbon price at 52€/t. The transition cost to achieve a 7.5 M car park in 2050 is estimated at 21.6 billion € that is, to JEl 4% discount rate, 115 € annually for each vehicle which would abate 2.18 tCO $$_2$$ 2 per year.

Suggested Citation

  • Anna Creti & Alena Kotelnikova & Guy Meunier & Jean-Pierre Ponssard, 2018. "Defining the Abatement Cost in Presence of Learning-by-Doing: Application to the Fuel Cell Electric Vehicle," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 777-800, November.
  • Handle: RePEc:kap:enreec:v:71:y:2018:i:3:d:10.1007_s10640-017-0183-y
    DOI: 10.1007/s10640-017-0183-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-017-0183-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-017-0183-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Jean-pierre Amigues & Gilles Lafforgue & Michel Moreaux, 2015. "Optimal timing of carbon sequestration policies," Economics Bulletin, AccessEcon, vol. 35(4), pages 2242-2251.
    3. Ottmar Edenhofer, Kai Lessmann, Claudia Kemfert, Michael Grubb and Jonathan Kohler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 57-108.
    4. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    5. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    6. Schennach, Susanne M., 2000. "The Economics of Pollution Permit Banking in the Context of Title IV of the 1990 Clean Air Act Amendments," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 189-210, November.
    7. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    8. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    9. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    10. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    11. Rezai, Armon & van der Ploeg, Frederick, 2015. "Robustness of a simple rule for the social cost of carbon," Economics Letters, Elsevier, vol. 132(C), pages 48-55.
    12. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    13. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Policy Research Working Paper Series 6154, The World Bank.
    14. Myles R. Allen & David J. Frame & Chris Huntingford & Chris D. Jones & Jason A. Lowe & Malte Meinshausen & Nicolai Meinshausen, 2009. "Warming caused by cumulative carbon emissions towards the trillionth tonne," Nature, Nature, vol. 458(7242), pages 1163-1166, April.
    15. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    16. Anna Creti & Alena Kotelnikova & Guy Meunier & Jean-Pierre Ponssard, 2015. "A cost benefit analysis of fuel cell electric vehicles," Working Papers hal-01116997, HAL.
    17. Manne, Alan S. & Barreto, Leonardo, 2004. "Learn-by-doing and carbon dioxide abatement," Energy Economics, Elsevier, vol. 26(4), pages 621-633, July.
    18. Bramoulle, Yann & Olson, Lars J., 2005. "Allocation of pollution abatement under learning by doing," Journal of Public Economics, Elsevier, vol. 89(9-10), pages 1935-1960, September.
    19. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    20. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    21. Sherwin Rosen, 1972. "Learning by Experience as Joint Production," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 86(3), pages 366-382.
    22. Thompson, Peter, 2010. "Learning by Doing," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 429-476, Elsevier.
    23. Terry Barker, Haoran Pan, Jonathan Kohler, Rachel Warren, and Sarah Winne, 2006. "Decarbonizing the Global Economy with Induced Technological Change: Scenarios to 2100 using E3MG," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 241-258.
    24. Claudio Marcantonini & A. Denny Ellerman, 2014. "The Implicit Carbon Price of Renewable Energy. Incentives in Germany," RSCAS Working Papers 2014/28, European University Institute.
    25. William D. Nordhaus, 2011. "Estimates of the Social Cost of Carbon: Background and Results from the RICE-2011 Model," NBER Working Papers 17540, National Bureau of Economic Research, Inc.
    26. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of CCS Policies under Decreasing Returns to Scale," TSE Working Papers 14-529, Toulouse School of Economics (TSE).
    27. Christa Clapp & Katia Karousakis & Barbara Buchner & Jean Château, 2009. "National and Sectoral GHG Mitigation Potential: A Comparison Across Models," OECD/IEA Climate Change Expert Group Papers 2009/7, OECD Publishing.
    28. Julien Brunet & Jean-Pierre Ponssard, 2016. "Policies and Deployment for Fuel Cell Electric Vehicles An Assessment of the Normandy Project," Working Papers hal-01366205, HAL.
    29. A. Denny Ellerman, 2014. "The Implicit Carbon Price of Renewable Energy. Incentives in Germany," EUI-RSCAS Working Papers p0376, European University Institute (EUI), Robert Schuman Centre of Advanced Studies (RSCAS).
    30. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    31. Georg Zachmann & Michael Holtermann & Jörg Radeke & Mimi Tam & Mark Huberty & Dmytro Naumenko & Anta Ndoye, . "The great transformation- decarbonising Europe’s energy and transport systems," Blueprints, Bruegel, number 691, December.
    32. Archsmith, James & Kendall, Alissa & Rapson, David, 2015. "From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles," Research in Transportation Economics, Elsevier, vol. 52(C), pages 72-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meunier, Guy & Ponssard, Jean-Pierre, 2020. "Optimal policy and network effects for the deployment of zero emission vehicles," European Economic Review, Elsevier, vol. 126(C).
    2. Julien Brunet & Jean-Pierre Ponssard, 2016. "Policies and Deployment for Fuel Cell Electric Vehicles An Assessment of the Normandy Project," Working Papers hal-01366205, HAL.
    3. Jiang, Hong-Dian & Dong, Kangyin & Qing, Jing & Teng, Qiang, 2023. "The role of technical change in low-carbon transformation and crises in the electricity market: A CGE analysis with R&D investment," Energy Economics, Elsevier, vol. 125(C).
    4. Stephen P. Holland & Erin T. Mansur & Andrew J. Yates, 2021. "The Electric Vehicle Transition and the Economics of Banning Gasoline Vehicles," American Economic Journal: Economic Policy, American Economic Association, vol. 13(3), pages 316-344, August.
    5. Guy Meunier & Jean-Pierre Ponssard, 2022. "Extending the Limits of the Abatement Cost," CESifo Working Paper Series 9707, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    2. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    3. Halvor B. Storrøsten, 2020. "Emission Regulation of Markets with Sluggish Supply Structures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(1), pages 1-33, September.
    4. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018. "When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.
    5. Armon Rezai & Frederick Van Der Ploeg, 2017. "Abandoning Fossil Fuel: How Fast and How Much," Manchester School, University of Manchester, vol. 85(S2), pages 16-44, December.
    6. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    7. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    8. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    9. Elofsson, Katarina & Gren, Ing-Marie, 2014. "Cost-efficient climate policies for interdependent and uncertain carbon pools," Working Paper Series 2014:7, Swedish University of Agricultural Sciences, Department Economics.
    10. Dietz, Simon & Gollier, Christian & Kessler, Louise, 2018. "The climate beta," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 258-274.
    11. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    12. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    13. Gerlagh , Reyer & Kverndokk , Snorre & Rosendahl , Knut Einar, 2007. "Optimal Timing of Environmental Policy: Interaction Between Environmental Taxes and Innovation Externalities," Memorandum 26/2006, Oslo University, Department of Economics.
    14. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    15. Tunç Durmaz & Fred Schroyen, 2020. "Evaluating Carbon Capture And Storage In A Climate Model With Endogenous Technical Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-47, February.
    16. Armon Rezai & Frederick Van der Ploeg, 2016. "Intergenerational Inequality Aversion, Growth, and the Role of Damages: Occam's Rule for the Global Carbon Tax," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 493-522.
    17. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Policy Research Working Paper Series 6154, The World Bank.
    18. Perrissin Fabert, Baptiste & Espagne, Etienne & Antonin, Pottier & Patrice, Dumas, 2014. "The Comparative Impact of Integrated Assessment Models' Structures on Optimal Mitigation Policies," Climate Change and Sustainable Development 177304, Fondazione Eni Enrico Mattei (FEEM).
    19. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.

    More about this item

    Keywords

    Dynamic abatement costs; Learning by doing; Fuel cell electric vehicles;
    All these keywords.

    JEL classification:

    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:71:y:2018:i:3:d:10.1007_s10640-017-0183-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.