IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v125y2023ics014098832300395x.html
   My bibliography  Save this article

The role of technical change in low-carbon transformation and crises in the electricity market: A CGE analysis with R&D investment

Author

Listed:
  • Jiang, Hong-Dian
  • Dong, Kangyin
  • Qing, Jing
  • Teng, Qiang

Abstract

The Russia–Ukraine conflict has exacerbated the global energy and electricity crisis. Considering China's carbon neutrality target, predicting the power market's response to the mandate of energy transformation and the impact of the energy crisis is particularly critical. Technical change is essential for the power sector to solve these crises; however, limited studies have systematically evaluated the role of endogenous technical change in low-carbon transformation of the power sector from an economy-wide perspective. Therefore, applying a multi-sector computable general equilibrium model, this study examines the potential trajectory of research and development (R&D)-based endogenous technical change, investigating the impact of different technical changes on China's power sector, the overall socio-economy, and the energy environment. The relevant results are threefold. First, carbon pricing combined with subsidising renewable electricity is an effective way to reduce emissions to achieve low-carbon transformation in the power sector. This approach can cause relatively moderate losses for the macro-economy and households' welfare. It can also significantly improve the renewable share, electrification rate and synergistic abatement effects on sulphur dioxide and nitrogen oxides. Second, shifting R&D inputs from fossil fuel power generation technology to renewable power technologies should be considered to advance the deep decarbonisation of the power sector. This approach can further improve the renewable share and electrification rate and enhance synergistic abatement effects; however, it can also slightly increase the macro-economic loss. Third, to alleviate the negative impacts to the macro-economy, it is advisable to consider increasing the R&D inputs of various sectors extensively, rather than only increasing that in the power sector. This approach can effectively alleviate the negative impacts on the socio-economy while improving the renewable share with the best synergistic abatement effects.

Suggested Citation

  • Jiang, Hong-Dian & Dong, Kangyin & Qing, Jing & Teng, Qiang, 2023. "The role of technical change in low-carbon transformation and crises in the electricity market: A CGE analysis with R&D investment," Energy Economics, Elsevier, vol. 125(C).
  • Handle: RePEc:eee:eneeco:v:125:y:2023:i:c:s014098832300395x
    DOI: 10.1016/j.eneco.2023.106897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832300395X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Hong-Dian & Xue, Mei-Mei & Liang, Qiao-Mei & Masui, Toshihiko & Ren, Zhong-Yuan, 2022. "How do demand-side policies contribute to the electrification and decarburization of private transportation in China? A CGE-based analysis," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    3. McFarland, J. R. & Reilly, J. M. & Herzog, H. J., 2004. "Representing energy technologies in top-down economic models using bottom-up information," Energy Economics, Elsevier, vol. 26(4), pages 685-707, July.
    4. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    5. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    6. Anna Creti & Alena Kotelnikova & Guy Meunier & Jean-Pierre Ponssard, 2018. "Defining the Abatement Cost in Presence of Learning-by-Doing: Application to the Fuel Cell Electric Vehicle," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 777-800, November.
    7. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    8. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    9. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    10. Jain, A. & Yamujala, S. & Gaur, A. & Das, P. & Bhakar, R. & Mathur, J., 2023. "Power sector decarbonization planning considering renewable resource variability and system operational constraints," Applied Energy, Elsevier, vol. 331(C).
    11. Hassan, Syed Tauseef & Khan, Danish & Zhu, Bangzhu & Batool, Bushra, 2022. "Is public service transportation increase environmental contamination in China? The role of nuclear energy consumption and technological change," Energy, Elsevier, vol. 238(PC).
    12. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    13. Jiang, Hong-Dian & Liu, Li-Jing & Dong, Kangyin & Fu, Yu-Wei, 2022. "How will sectoral coverage in the carbon trading system affect the total oil consumption in China? A CGE-based analysis," Energy Economics, Elsevier, vol. 110(C).
    14. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 311-333.
    15. Michaja Pehl & Anders Arvesen & Florian Humpenöder & Alexander Popp & Edgar G. Hertwich & Gunnar Luderer, 2017. "Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling," Nature Energy, Nature, vol. 2(12), pages 939-945, December.
    16. Ball-Burack, Ari & Salas, Pablo & Mercure, Jean-Francois, 2022. "Great power, great responsibility: Assessing power sector policy for the UK’s net zero target," Energy Policy, Elsevier, vol. 168(C).
    17. Wang, Ke & Wang, Can & Chen, Jining, 2009. "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change," Energy Policy, Elsevier, vol. 37(8), pages 2930-2940, August.
    18. Li-Jing Liu & Hong-Dian Jiang & Qiao-Mei Liang & Felix Creutzig & Hua Liao & Yun-Fei Yao & Xiang-Yan Qian & Zhong-Yuan Ren & Jing Qing & Qi-Ran Cai & Ottmar Edenhofer & Yi-Ming Wei, 2023. "Carbon emissions and economic impacts of an EU embargo on Russian fossil fuels," Nature Climate Change, Nature, vol. 13(3), pages 290-296, March.
    19. Hong-Dian Jiang & Mei-Mei Xue & Kang-Yin Dong & Qiao-Mei Liang, 2022. "How will natural gas market reforms affect carbon marginal abatement costs? Evidence from China," Economic Systems Research, Taylor & Francis Journals, vol. 34(2), pages 129-150, April.
    20. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    21. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
    22. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    23. Gregory Nemet & Erin Baker & Bob Barron & Samuel Harms, 2015. "Characterizing the effects of policy instruments on the future costs of carbon capture for coal power plants," Climatic Change, Springer, vol. 133(2), pages 155-168, November.
    24. Victor, Nadejda & Nichols, Christopher & Zelek, Charles, 2018. "The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model," Energy Economics, Elsevier, vol. 73(C), pages 410-425.
    25. Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
    26. Hille, Erik & Oelker, Thomas J., 2023. "International expansion of renewable energy capacities: The role of innovation and choice of policy instruments," Ecological Economics, Elsevier, vol. 204(PA).
    27. Anna Creti & Alena Kotelnikova & Guy Meunier & Jean-Pierre Ponssard, 2018. "Correction to: Defining the Abatement Cost in Presence of Learning-by-Doing: Application to the Fuel Cell Electric Vehicle," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 801-801, November.
    28. Paul, Satya & Shankar, Sriram, 2022. "Regulatory reforms and the efficiency and productivity growth in electricity generation in OECD countries," Energy Economics, Elsevier, vol. 108(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    2. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
    3. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    4. Ling Tang & Qin Bao & ZhongXiang Zhang & Shouyang Wang, 2015. "Carbon-based border tax adjustments and China’s international trade: analysis based on a dynamic computable general equilibrium model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 329-360, April.
    5. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    6. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    7. Jiang, Hong-Dian & Liu, Li-Jing & Dong, Kangyin & Fu, Yu-Wei, 2022. "How will sectoral coverage in the carbon trading system affect the total oil consumption in China? A CGE-based analysis," Energy Economics, Elsevier, vol. 110(C).
    8. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    9. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    10. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    11. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    12. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Kurt Kratena & Michael Wüger, 2012. "Technological Change and Energy Demand in Europe," WIFO Working Papers 427, WIFO.
    14. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    15. Hwang Won-Sik & Oh Inha & Lee Jeong-Dong, 2014. "The Impact of Korea’s Green Growth Policies on the National Economy and Environment," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 14(4), pages 1-30, October.
    16. Veronika Kulmer, 2013. "Promoting alternative, environmentally friendly passenger transport technologies: Directed technological change in a bottom-up/top-down CGE model," Graz Economics Papers 2013-02, University of Graz, Department of Economics.
    17. Mu, Yaqian & Wang, Can & Cai, Wenjia, 2018. "The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2955-2966.
    18. Meunier, Guy & Ponssard, Jean-Pierre, 2020. "Optimal policy and network effects for the deployment of zero emission vehicles," European Economic Review, Elsevier, vol. 126(C).
    19. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    20. Tian, Xu & Dai, Hancheng & Geng, Yong & Huang, Zhen & Masui, Toshihiko & Fujita, Tsuyoshi, 2017. "The effects of carbon reduction on sectoral competitiveness in China: A case of Shanghai," Applied Energy, Elsevier, vol. 197(C), pages 270-278.

    More about this item

    Keywords

    Endogenous technical change; R&D investment; Power sector; Economy-wide impact; Computable general equilibrium;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:125:y:2023:i:c:s014098832300395x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.