IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Barriers to energy efficiency in industrial bottom-up energy demand models--A review

  • Fleiter, Tobias
  • Worrell, Ernst
  • Eichhammer, Wolfgang
Registered author(s):

    The goal of this paper is to review bottom-up models for industrial energy demand with a particular focus on their capability to model barriers to the adoption of energy-efficient technologies. The integration of barriers into the models is an important prerequisite for a more detailed and realistic modeling of policies for energy efficiency. Particularly with the emergence of more and more varying policy instruments, it also becomes crucial for the models to take account of these policies as well as the barriers they address in a more realistic way. Our review revealed that, despite the broadly evident existence of market failures and barriers for energy-efficient technologies, they are only partly and in a rather aggregated form considered in today's bottom-up models. The state-of-the-art bottom-up model is based on an explicit representation of the technology stock and considers the costs of energy efficiency options in detail. But with regard to barriers, most models only make use of an aggregated approach, like an adjusted discount rate. While some models do not even consider technology costs and energy prices, but instead use exogenous technology diffusion rates, other more advanced models took first steps towards considering barriers in more detail. The latter allows differentiation between multiple parameters that influence technology adoption. Still, even in the most advanced models, only a few of the observed barriers are explicitly considered. At the same time, new approaches to considering barriers like uncertainty or the (slow) spread of information are being developed in other disciplines. We conclude the paper by summarizing promising ways to improve representation of barriers in bottom-up models.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Renewable and Sustainable Energy Reviews.

    Volume (Year): 15 (2011)
    Issue (Month): 6 (August)
    Pages: 3099-3111

    in new window

    Handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:3099-3111
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    2. Harris, Jane & Anderson, Jane & Shafron, Walter, 2000. "Investment in energy efficiency: a survey of Australian firms," Energy Policy, Elsevier, vol. 28(12), pages 867-876, October.
    3. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    4. Matsuoka, Yuzuru & Kainuma, Mikiko & Morita, Tsuneyuki, 1995. "Scenario analysis of global warming using the Asian Pacific Integrated Model (AIM)," Energy Policy, Elsevier, vol. 23(4-5), pages 357-371.
    5. Chateau, B. & Lapillonne, B., 1978. "Long-term energy demand forecasting A new approach," Energy Policy, Elsevier, vol. 6(2), pages 140-157, June.
    6. Oda, Junichiro & Akimoto, Keigo & Sano, Fuminori & Tomoda, Toshimasa, 2007. "Diffusion of energy efficient technologies and CO2 emission reductions in iron and steel sector," Energy Economics, Elsevier, vol. 29(4), pages 868-888, July.
    7. Jan Velthuijsen, 1993. "Incentives for investment in energy efficiency: an econometric evaluation and policy implications," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 3(2), pages 153-169, April.
    8. Lapillonne, B. & Chateau, B., 1981. "The medee models for long term energy demand forecasting," Socio-Economic Planning Sciences, Elsevier, vol. 15(2), pages 53-58.
    9. Simon, Herbert A, 1979. "Rational Decision Making in Business Organizations," American Economic Review, American Economic Association, vol. 69(4), pages 493-513, September.
    10. Geroski, Paul A, 1999. "Models of Technology Diffusion," CEPR Discussion Papers 2146, C.E.P.R. Discussion Papers.
    11. DeCanio, Stephen J, 1998. "The efficiency paradox: bureaucratic and organizational barriers to profitable energy-saving investments," Energy Policy, Elsevier, vol. 26(5), pages 441-454, April.
    12. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    13. de Groot, Henri L. F. & Verhoef, Erik T. & Nijkamp, Peter, 2001. "Energy saving by firms: decision-making, barriers and policies," Energy Economics, Elsevier, vol. 23(6), pages 717-740, November.
    14. Lutz, Christian & Meyer, Bernd & Nathani, Carsten & Schleich, Joachim, 2005. "Endogenous technological change and emissions: the case of the German steel industry," Energy Policy, Elsevier, vol. 33(9), pages 1143-1154, June.
    15. Yi-Ming Wei & Gang Wu & Ying Fan & Lan-Cui Liu, 2006. "Progress in energy complex system modelling and analysis," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 25(1/2), pages 109-128.
    16. Greening, Lorna A. & Boyd, Gale & Roop, Joseph M., 2007. "Modeling of industrial energy consumption: An introduction and context," Energy Economics, Elsevier, vol. 29(4), pages 599-608, July.
    17. Newell, Richard & Anderson, Soren, 2002. "Information Programs for Technology Adoption: The Case of Energy-Efficiency Audits," Discussion Papers dp-02-58, Resources For the Future.
    18. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    19. Gielen, Dolf & Moriguchi, Yuichi, 2002. "CO2 in the iron and steel industry: an analysis of Japanese emission reduction potentials," Energy Policy, Elsevier, vol. 30(10), pages 849-863, August.
    20. Hainoun, A. & Seif-Eldin, M.K. & Almoustafa, S., 2006. "Analysis of the Syrian long-term energy and electricity demand projection using the end-use methodology," Energy Policy, Elsevier, vol. 34(14), pages 1958-1970, September.
    21. Katja Schumacher & Ronald D. Sands, 2006. "Where Are the Industrial Technologies in Energy-Economy Models?: An Innovative CGE Approach for Steel Production in Germany," Discussion Papers of DIW Berlin 605, DIW Berlin, German Institute for Economic Research.
    22. Pantelis Capros & Leonidas Mantzos, 2000. "The European energy outlook to 2010 and 2030," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 137-154.
    23. Worrell, Ernst & Laitner, John A & Ruth, Michael & Finman, Hodayah, 2003. "Productivity benefits of industrial energy efficiency measures," Energy, Elsevier, vol. 28(11), pages 1081-1098.
    24. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy paradox and the diffusion of conservation technology," Resource and Energy Economics, Elsevier, vol. 16(2), pages 91-122, May.
    25. Daan van Soest & Erwin Bulte, 2001. "Does the Energy-Efficiency Paradox Exist? Technological Progress and Uncertainty," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 18(1), pages 101-112, January.
    26. van Soest, Daan P., 2005. "The impact of environmental policy instruments on the timing of adoption of energy-saving technologies," Resource and Energy Economics, Elsevier, vol. 27(3), pages 235-247, October.
    27. Allan, Grant & Hanley, Nick & McGregor, Peter & Swales, Kim & Turner, Karen, 2007. "The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom," Energy Economics, Elsevier, vol. 29(4), pages 779-798, July.
    28. Russ, Peter & Criqui, Patrick, 2007. "Post-Kyoto CO2 emission reduction: The soft landing scenario analysed with POLES and other world models," Energy Policy, Elsevier, vol. 35(2), pages 786-796, February.
    29. Worrell, Ernst & Biermans, Gijs, 2005. "Move over! Stock turnover, retrofit and industrial energy efficiency," Energy Policy, Elsevier, vol. 33(7), pages 949-962, May.
    30. Schleich, Joachim & Gruber, Edelgard, 2008. "Beyond case studies: Barriers to energy efficiency in commerce and the services sector," Energy Economics, Elsevier, vol. 30(2), pages 449-464, March.
    31. Schleich, Joachim, 2009. "Barriers to energy efficiency: A comparison across the German commercial and services sector," Ecological Economics, Elsevier, vol. 68(7), pages 2150-2159, May.
    32. Gillingham, Kenneth T. & Newell, Richard G. & Pizer, William A., 2007. "Modeling Endogenous Technological Change for Climate Policy Analysis," Discussion Papers dp-07-14, Resources For the Future.
    33. Koopmans, Carl C. & te Velde, Dirk Willem, 2001. "Bridging the energy efficiency gap: using bottom-up information in a top-down energy demand model," Energy Economics, Elsevier, vol. 23(1), pages 57-75, January.
    34. Rivers, Nic & Jaccard, Mark, 2006. "Useful models for simulating policies to induce technological change," Energy Policy, Elsevier, vol. 34(15), pages 2038-2047, October.
    35. de Almeida, Edmar Luiz Fagundes, 1998. "Energy efficiency and the limits of market forces: The example of the electric motor market in France," Energy Policy, Elsevier, vol. 26(8), pages 643-653, July.
    36. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    37. Kainuma, Mikiko & Matsuoka, Yuzuru & Morita, Tsuneyuki, 2000. "The AIM/end-use model and its application to forecast Japanese carbon dioxide emissions," European Journal of Operational Research, Elsevier, vol. 122(2), pages 416-425, April.
    38. Murphy, Rose & Rivers, Nic & Jaccard, Mark, 2007. "Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada," Energy Economics, Elsevier, vol. 29(4), pages 826-846, July.
    39. Zhang, ZhongXiang & Folmer, Henk, 1998. "Economic modelling approaches to cost estimates for the control of carbon dioxide emissions1," Energy Economics, Elsevier, vol. 20(1), pages 101-120, February.
    40. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
    41. Gielen, Dolf & Taylor, Michael, 2007. "Modelling industrial energy use: The IEAs Energy Technology Perspectives," Energy Economics, Elsevier, vol. 29(4), pages 889-912, July.
    42. Ma, T. & Grubler, A. & Nakamori, Y., 2009. "Modeling technology adoptions for sustainable development under increasing returns, uncertainty, and heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 296-306, May.
    43. Peter Russ & Patrick Criqui, 2007. "Post-Kyoto CO2 emission reduction : the soft landing scenario analysed with POLES and other world models," Post-Print halshs-00078489, HAL.
    44. Kainuma, Mikiko & Matsuoka, Yuzuru & Morita, Tsuneyuki & Masui, Toshihiko & Takahashi, Kiyoshi, 2004. "Analysis of global warming stabilization scenarios: the Asian-Pacific Integrated Model," Energy Economics, Elsevier, vol. 26(4), pages 709-719, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:3099-3111. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.