IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v33y2005i9p1143-1154.html
   My bibliography  Save this article

Endogenous technological change and emissions: the case of the German steel industry

Author

Listed:
  • Lutz, Christian
  • Meyer, Bernd
  • Nathani, Carsten
  • Schleich, Joachim

Abstract

No abstract is available for this item.

Suggested Citation

  • Lutz, Christian & Meyer, Bernd & Nathani, Carsten & Schleich, Joachim, 2005. "Endogenous technological change and emissions: the case of the German steel industry," Energy Policy, Elsevier, vol. 33(9), pages 1143-1154, June.
  • Handle: RePEc:eee:enepol:v:33:y:2005:i:9:p:1143-1154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(03)00351-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Lutz, 2000. "NO x Emissions and the Use of Advanced Pollution Abatement Techniques in West Germany," Economic Systems Research, Taylor & Francis Journals, vol. 12(3), pages 305-318.
    2. Lori D. Snyder & Nolan H. Miller & Robert N. Stavins, 2003. "The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing," American Economic Review, American Economic Association, vol. 93(2), pages 431-435, May.
    3. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    4. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics,in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516 Elsevier.
    5. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    6. John P. Weyant, 1993. "Costs of Reducing Global Carbon Emissions," Journal of Economic Perspectives, American Economic Association, vol. 7(4), pages 27-46, Fall.
    7. David Popp, 2003. "ENTICE: Endogenous Technological Change in the DICE Model of Global Warming," NBER Working Papers 9762, National Bureau of Economic Research, Inc.
    8. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    9. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    10. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    11. Ruth, Matthias & Amato, Anthony, 2002. "Vintage structure dynamics and climate change policies: the case of US iron and steel," Energy Policy, Elsevier, vol. 30(7), pages 541-552, June.
    12. Bach, Stefan & Kohlhaas, Michael & Meyer, Bernd & Praetorius, Barbara & Welsch, Heinz, 2002. "The effects of environmental fiscal reform in Germany: a simulation study," Energy Policy, Elsevier, vol. 30(9), pages 803-811, July.
    13. Springer, Urs & Varilek, Matthew, 2004. "Estimating the price of tradable permits for greenhouse gas emissions in 2008-12," Energy Policy, Elsevier, vol. 32(5), pages 611-621, March.
    14. Kim, Yeonbae & Worrell, Ernst, 2002. "International comparison of CO2 emission trends in the iron and steel industry," Energy Policy, Elsevier, vol. 30(10), pages 827-838, August.
    15. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    16. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:33:y:2005:i:9:p:1143-1154. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.