IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332704.html
   My bibliography  Save this paper

A global stocktake of the Paris pledges: implications for energy systems and economy

Author

Listed:
  • Vandyck, Toon
  • Saveyn, Bert
  • Keramidas, Kimon
  • Kitous, Alban
  • Vrontisi, Zoi

Abstract

This paper presents a model-based assessment of the United Nations-led round of international climate change negotiations in Paris in December 2015 (COP21). We combine a technology-rich bottom-up energy system model with a top-down economic model that captures economy-wide interactions. We analyse the impact of the Intended Nationally Determined Contributions (INDCs) by the individual countries put forward in the run-up to COP21 on greenhouse gas emissions, energy demand and supply, and the wider economic effects, including the implications for trade flows and employment levels. We also illustrate how the gap between the Paris pledges and a pathway that is likely to restrict global warming to 2°C can be bridged, taking into account both equity and efficiency considerations. Results indicate that energy demand reduction and a decarbonisation of the power sector are important contributors to overall emission reductions up to 2050. Further, the analysis shows that global action to cut emissions is consistent with robust economic growth. Emerging and lowest-income economies will maintain high rates of economic growth. The analysis also provides evidence that the use of smart fiscal policies tailored to each region, i.e. increasing emission auctions and taxes, reducing indirect taxes to consumption and investment, and/or lowering labour taxes, can further increase GDP growth.

Suggested Citation

  • Vandyck, Toon & Saveyn, Bert & Keramidas, Kimon & Kitous, Alban & Vrontisi, Zoi, 2016. "A global stocktake of the Paris pledges: implications for energy systems and economy," Conference papers 332704, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332704
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332704/files/7892.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fankhauser, Samuel & S.J. Tol, Richard, 2005. "On climate change and economic growth," Resource and Energy Economics, Elsevier, vol. 27(1), pages 1-17, January.
    2. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    3. Warwick J. Mckibbin & Adele C. Morris & Peter J. Wilcoxen, 2011. "Comparing Climate Commitments: A Model-Based Analysis Of The Copenhagen Accord," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 79-103.
    4. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    5. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    6. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    7. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    8. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "An analysis of China's climate policy using the China-in-Global Energy Model," Economic Modelling, Elsevier, vol. 52(PB), pages 650-660.
    9. Christian Gollier and Jean Tirole, 2015. "Negotiating effective institutions against climate change," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Da & Peng, Hantang & Zhang, Lin, 2023. "Share of polluting input as a sufficient statistic for burden sharing," Energy Economics, Elsevier, vol. 121(C).
    2. Clora, Francesco & Yu, Wusheng, 2022. "GHG emissions, trade balance, and carbon leakage: Insights from modeling thirty-one European decarbonization pathways towards 2050," Energy Economics, Elsevier, vol. 113(C).
    3. Sebayang, Abdi Hanra & Ideris, Fazril & Silitonga, Arridina Susan & Shamsuddin, A.H. & Zamri, M.F.M.A. & Pulungan, Muhammad Anhar & Siahaan, Sihar & Alfansury, Munawar & Kusumo, F. & Milano, Jassinnee, 2023. "Optimization of ultrasound-assisted oil extraction from Carica candamarcensis; A potential Oleaginous tropical seed oil for biodiesel production," Renewable Energy, Elsevier, vol. 211(C), pages 434-444.
    4. Piris-Cabezas, Pedro & Lubowski, Ruben N. & Leslie, Gabriela, 2023. "Estimating the potential of international carbon markets to increase global climate ambition," World Development, Elsevier, vol. 167(C).
    5. Clora, Francesco & Yu, Wusheng & Corong, Erwin, 2023. "Alternative carbon border adjustment mechanisms in the European Union and international responses: Aggregate and within-coalition results," Energy Policy, Elsevier, vol. 174(C).
    6. Kimon Keramidas & Silvana Mima & Adrien Bidaud, 2024. "Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modelling approach," Post-Print hal-04383385, HAL.
    7. Mauricio Marrone & Martina K Linnenluecke, 2020. "Interdisciplinary Research Maps: A new technique for visualizing research topics," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    2. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    3. Zhang, Zhong Xiang, 2012. "Competitiveness and Leakage Concerns and Border Carbon Adjustments," International Review of Environmental and Resource Economics, now publishers, vol. 6(3), pages 225-287, December.
    4. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    5. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    6. Kerstin Hötte, 2021. "Skill transferability and the stability of transition pathways- A learning-based explanation for patterns of diffusion," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 959-993, July.
    7. Claudio Baccianti & Andreas Löschel, 2014. "The Role of Product and Process Innovation in CGE Models of Environmental Policy. WWWforEurope Working Paper No. 68," WIFO Studies, WIFO, number 47501, April.
    8. Luca Spinesi, 2022. "The Environmental Tax: Effects on Inequality and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(3), pages 529-572, July.
    9. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    10. Soumyananda Dinda, 2018. "Production technology and carbon emission: long-run relation with short-run dynamics," Journal of Applied Economics, Taylor & Francis Journals, vol. 21(1), pages 106-121, January.
    11. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    12. Mare Sarr & Tim Swanson, 2017. "Will Technological Change Save the World? The Rebound Effect in International Transfers of Technology," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 577-604, March.
    13. Veronika Kulmer, 2013. "Promoting alternative, environmentally friendly passenger transport technologies: Directed technological change in a bottom-up/top-down CGE model," Graz Economics Papers 2013-02, University of Graz, Department of Economics.
    14. Mu, Yaqian & Wang, Can & Cai, Wenjia, 2018. "The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2955-2966.
    15. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    16. Wang, Ke & Wang, Can & Chen, Jining, 2009. "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change," Energy Policy, Elsevier, vol. 37(8), pages 2930-2940, August.
    17. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
    18. Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013. "Statistical Basis for Predicting Technological Progress," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    19. Wand, Robert & Leuthold, Florian, 2011. "Feed-in tariffs for photovoltaics: Learning by doing in Germany?," Applied Energy, Elsevier, vol. 88(12), pages 4387-4399.
    20. Liu, Weifeng & McKibbin, Warwick J. & Morris, Adele C. & Wilcoxen, Peter J., 2020. "Global economic and environmental outcomes of the Paris Agreement," Energy Economics, Elsevier, vol. 90(C).

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.