IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/129025.html
   My bibliography  Save this paper

Optimal climate policy under exogenous and endogenous technical change: making sense of the different approaches

Author

Listed:
  • Coppens, Léo
  • Dietz, Simon
  • Venmans, Frank

Abstract

We analyse the large and diverse literature on technical change in integrated assessment models (IAMs) of climate change, with a view to understanding how different representations of technical change affect optimal climate policy. We first solve an analytical IAM that features several models of technical change from the literature, including exogenous technical change in abatement technologies, exogenous decarbonisation of the economy, endogenous technical change via learning-by-doing, and endogenous technical change via R&D (in particular, directed technical change). We show how these models of technical change impact optimal carbon prices, emissions and temperatures in often quite different ways. We then survey how technical change is currently represented in the main quantitative IAMs used to inform policy, demonstrating that a range of approaches are used. Exogenous technical change in abatement technologies and learning-by-doing are most popular, although the latter mechanism is only partially endogenous in some models. We go on to quantify technical change in these policy models using structural estimation, and simulate our analytical IAM numerically, assessing the effect of technical change on optimal climate policy. We find large quantitative effects of technical change and large quantitative differences between different representations of technical change, both under cost-benefit and cost-effectiveness objectives.

Suggested Citation

  • Coppens, Léo & Dietz, Simon & Venmans, Frank, 2025. "Optimal climate policy under exogenous and endogenous technical change: making sense of the different approaches," LSE Research Online Documents on Economics 129025, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:129025
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/129025/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Kenneth Gillingham & William Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly, 2018. "Modeling Uncertainty in Integrated Assessment of Climate Change: A Multimodel Comparison," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(4), pages 791-826.
    3. Grubb, Michael & Lange, Rutger-Jan & Cerkez, Nicolas & Sognnaes, Ida & Wieners, Claudia & Salas, Pablo, 2024. "Dynamic determinants of optimal global climate policy," Structural Change and Economic Dynamics, Elsevier, vol. 71(C), pages 490-508.
    4. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    5. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    6. D. P. van Vuuren & Kaj-Ivar Wijst & Stijn Marsman & Maarten Berg & Andries F. Hof & Chris D. Jones, 2020. "The costs of achieving climate targets and the sources of uncertainty," Nature Climate Change, Nature, vol. 10(4), pages 329-334, April.
    7. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    8. Moritz A. Drupp & Mark C. Freeman & Ben Groom & Frikk Nesje, 2018. "Discounting Disentangled," American Economic Journal: Economic Policy, American Economic Association, vol. 10(4), pages 109-134, November.
    9. J-F Mercure & H. Pollitt & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & A. Lam & F. Knobloch & J. Vinuales, 2017. "Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE," Papers 1707.04870, arXiv.org, revised Jan 2018.
    10. Jorgenson, Dale W. & Wilcoxen, Peter J., 1993. "Reducing US carbon emissions: an econometric general equilibrium assessment," Resource and Energy Economics, Elsevier, vol. 15(1), pages 7-25, March.
    11. Ruben Bibas & C. Cassen & Renaud Crassous & Céline Guivarch & Meriem Hamdi-Cherif & Jean Charles Hourcade & Florian Leblanc & Aurélie Méjean & Eoin Ó Broin & Julie Rozenberg & Olivier Sassi & Adrien V, 2022. "IMpact Assessment of CLIMate policies with IMACLIM-R 1.1. Model documentation version 1.1," CIRED Working Papers hal-03702627, HAL.
    12. Gavard, Claire & Voigt, Sebastian & Genty, Aurélien, 2022. "Using emissions trading schemes to reduce heterogeneous distortionary taxes: The case of recycling carbon auction revenues to support renewable energy," Energy Policy, Elsevier, vol. 168(C).
    13. Armon Rezai & Frederick Van der Ploeg, 2016. "Intergenerational Inequality Aversion, Growth, and the Role of Damages: Occam's Rule for the Global Carbon Tax," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 493-522.
    14. Lucena, André F.P. & Hejazi, Mohamad & Vasquez-Arroyo, Eveline & Turner, Sean & Köberle, Alexandre C. & Daenzer, Kathryn & Rochedo, Pedro R.R. & Kober, Tom & Cai, Yongxia & Beach, Robert H. & Gernaat,, 2018. "Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil," Energy, Elsevier, vol. 164(C), pages 1161-1177.
    15. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    16. John Hassler & Per Krusell & Conny Olovsson, 2021. "Directed Technical Change as a Response to Natural Resource Scarcity," Journal of Political Economy, University of Chicago Press, vol. 129(11), pages 3039-3072.
    17. Stephie Fried, 2018. "Climate Policy and Innovation: A Quantitative Macroeconomic Analysis," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 90-118, January.
    18. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    19. Dietz, Simon & Venmans, Frank, 2019. "Cumulative carbon emissions and economic policy: In search of general principles," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 108-129.
    20. Alexandros Nikas & Haris Doukas & Andreas Papandreou, 2019. "A Detailed Overview and Consistent Classification of Climate-Economy Models," Springer Books, in: Haris Doukas & Alexandros Flamos & Jenny Lieu (ed.), Understanding Risks and Uncertainties in Energy and Climate Policy, pages 1-54, Springer.
    21. Armon Rezai & Frederick Van der Ploeg, 2016. "Intergenerational Inequality Aversion, Growth, and the Role of Damages: Occam's Rule for the Global Carbon Tax," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 493-522.
    22. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    23. Kimon Keramidas & Alban Kitous & Jacques Despres & Andreas Schmitz & Ana Diaz Vazquez & Silvana Mima & Peter Russ & Tobias Wiesenthal, 2017. "POLES-JRC model documentation," JRC Research Reports JRC107387, Joint Research Centre.
    24. Wilkerson, Jordan T. & Cullenward, Danny & Davidian, Danielle & Weyant, John P., 2013. "End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors," Energy Economics, Elsevier, vol. 40(C), pages 773-784.
    25. David Hémous & Morten Olsen, 2021. "Directed Technical Change in Labor and Environmental Economics," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 571-597, August.
    26. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    27. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    28. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    29. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    30. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    31. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    32. Jakeman, Guy & Hanslow, Kevin & Hinchy, Mike & Fisher, Brian S. & Woffenden, Kate, 2004. "Induced innovations and climate change policy," Energy Economics, Elsevier, vol. 26(6), pages 937-960, November.
    33. Peter H. Howard & Thomas Sterner, 2017. "Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 197-225, September.
    34. Fuminori Sano, Keigo Akimoto, Takashi Homma and Toshimasa Tomoda, 2006. "Analysis of Technological Portfolios for CO2 Stabilizations and Effects of Technological Changes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 141-162.
    35. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
    36. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.
    37. Christoph Böhringer & Andreas Löschel & Thomas F. Rutherford, 2009. "Policy Analysis Based on Computable Equilibrium (PACE)," Chapters, in: Valentina Bosetti & Reyer Gerlagh & Stefan P. Schleicher (ed.), Modelling Sustainable Development, chapter 14, Edward Elgar Publishing.
    38. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    39. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    40. Rob Hart, 2019. "To Everything There Is a Season: Carbon Pricing, Research Subsidies, and the Transition to Fossil-Free Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(2), pages 349-389.
    41. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    42. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    43. Christoph Boehringer & Sonja Peterson & Thomas F. Rutherford & Jan Schneider & Malte Winkler, 2021. "Climate Policies after Paris: Pledge, Trade and Recycle Insights from the 36th Energy Modeling Forum Study (EMF36)," Working Papers V-434-21, University of Oldenburg, Department of Economics, revised May 2021.
    44. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    45. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    46. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    47. Wada, Kenichi & Sano, Fuminori & Akimoto, Keigo & Homma, Takashi, 2012. "Assessment of Copenhagen pledges with long-term implications," Energy Economics, Elsevier, vol. 34(S3), pages 481-486.
    48. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
    49. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    50. Di Maria, Corrado & Smulders, Sjak, 2017. "A paler shade of green: Environmental policy under induced technical change," European Economic Review, Elsevier, vol. 99(C), pages 151-169.
    51. Erwin Corong & Thomas Hertel & Robert McDougall & Marinos Tsigas & Dominique van der Mensbrugghe, 2017. "The Standard GTAP Model, version 7," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(1), pages 1-119, June.
    52. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léo Coppens & Simon Dietz & Frank Venmans, 2024. "Optimal Climate Policy under Exogenous and Endogenous Technical Change: Making Sense of the Different Approaches," CESifo Working Paper Series 11059, CESifo.
    2. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    3. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    4. Campiglio, Emanuele & Dietz, Simon & Venmans, Frank, 2022. "Optimal climate policy as if the transition matters," LSE Research Online Documents on Economics 117609, London School of Economics and Political Science, LSE Library.
    5. Moritz A. Drupp & Frikk Nesje & Robert C. Schmidt & Robert Christian Schmidt, 2022. "Pricing Carbon," CESifo Working Paper Series 9608, CESifo.
    6. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    7. Gerlagh, Reyer, 2023. "Climate, technology, family size; on the crossroad between two ultimate externalities," European Economic Review, Elsevier, vol. 152(C).
    8. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    9. Traeger, Christian, 2021. "ACE - Analytic Climate Economy," CEPR Discussion Papers 15968, C.E.P.R. Discussion Papers.
    10. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    11. Grubb, Michael & Lange, Rutger-Jan & Cerkez, Nicolas & Sognnaes, Ida & Wieners, Claudia & Salas, Pablo, 2024. "Dynamic determinants of optimal global climate policy," Structural Change and Economic Dynamics, Elsevier, vol. 71(C), pages 490-508.
    12. Miftakhova, Alena, 2021. "Global sensitivity analysis for optimal climate policies: Finding what truly matters," Economic Modelling, Elsevier, vol. 105(C).
    13. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    14. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    15. Reyer Gerlagh & Veronica Lupi & Marzio Galeotti, 2023. "Fertility and climate change," Scandinavian Journal of Economics, Wiley Blackwell, vol. 125(1), pages 208-252, January.
    16. Jo, Ara & Miftakhova, Alena, 2024. "How constant is constant elasticity of substitution? Endogenous substitution between clean and dirty energy," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    17. Moritz A. Drupp & Martin C. Hänsel, 2021. "Relative Prices and Climate Policy: How the Scarcity of Nonmarket Goods Drives Policy Evaluation," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 168-201, February.
    18. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    19. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    20. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:129025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.