IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/1527.html
   My bibliography  Save this paper

An economic and environmental assessment of carbon capture and storage (CCS) power plants - A case study for the city of Kiel

Author

Listed:
  • Lindner, Sören
  • Peterson, Sonja
  • Windhorst, Wilhelm

Abstract

In the next years several power plants throughout Europe have to be replaced and the questions is whether to build coal fired power plants with carbon capture and storage (CCS). In a study for the city of Kiel in northern Germany only a 800 MW coal power plant reaches a required minimum rentability. We use the study for an additional economic and environmental evaluation of a coal plant with CCS. We find that integrated gasification combined cycle (IGCC) plants with CCS have in two out of three carbon and energy price scenarios the largest rentability. Pulverized coal (PC) plants with CCS can only compete with other options under very favourable assumptions. Life-cycle emissions from CCS are less than 70% of a coal plant compared to at least more than 80% when only considering direct emissions from plants. Still, life-cycle emissions are lower than in any other assessed option.

Suggested Citation

  • Lindner, Sören & Peterson, Sonja & Windhorst, Wilhelm, 2009. "An economic and environmental assessment of carbon capture and storage (CCS) power plants - A case study for the city of Kiel," Kiel Working Papers 1527, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkwp:1527
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/28355/1/60336926X.PDF
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Praetorius, Barbara & Schumacher, Katja, 2009. "Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage," Energy Policy, Elsevier, vol. 37(12), pages 5081-5093, December.
    2. Narita, Daiju, 2008. "The use of CCS in global carbon management: simulation with the DICE model," Kiel Working Papers 1440, Kiel Institute for the World Economy (IfW Kiel).
    3. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, September.
    4. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    5. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
    6. Klaus S. Lackner & Jeffrey D. Sachs, 2005. "A Robust Strategy for Sustainable Energy," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 36(2), pages 215-284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meleesa Naughton & Richard C. Darton & Fai Fung, 2012. "Could Climate Change Limit Water Availability for Coal-Fired Electricity Generation with Carbon Capture and Storage? A UK Case Study," Energy & Environment, , vol. 23(2-3), pages 265-282, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastiano Cupertino, 2013. "Cost-benefit analysis of carbon dioxide capture and storage considering the impact of two different climate change mitigation regimes," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(1), pages 73-89.
    2. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    3. García, Jorge H. & Torvanger, Asbjørn, 2019. "Carbon leakage from geological storage sites: Implications for carbon trading," Energy Policy, Elsevier, vol. 127(C), pages 320-329.
    4. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    5. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    6. Méjean, Aurélie & Hope, Chris, 2013. "Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery," Energy Policy, Elsevier, vol. 60(C), pages 27-40.
    7. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    8. Scrieciu, S. Şerban & Barker, Terry & Ackerman, Frank, 2013. "Pushing the boundaries of climate economics: critical issues to consider in climate policy analysis," Ecological Economics, Elsevier, vol. 85(C), pages 155-165.
    9. Narbel, Patrick André & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 91-97.
    10. Anna Creti & Alena Kotelnikova & Guy Meunier & Jean-Pierre Ponssard, 2018. "Defining the Abatement Cost in Presence of Learning-by-Doing: Application to the Fuel Cell Electric Vehicle," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 777-800, November.
    11. Aurélie Méjean & Chris Hope, 2010. "The Effect of CO2 Pricing on Conventional and Non-Conventional Oil Supply and Demand," Working Papers EPRG 1029, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Nadine Heitmann & Christine Bertram & Daiju Narita, 2012. "Embedding CCS infrastructure into the European electricity system: a policy coordination problem," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 669-686, August.
    13. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    14. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    15. Méjean, Aurélie & Hope, Chris, 2010. "Modelling the costs of energy crops: A case study of US corn and Brazilian sugar cane," Energy Policy, Elsevier, vol. 38(1), pages 547-561, January.
    16. Scott Barrett, 2009. "The Coming Global Climate-Technology Revolution," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 53-75, Spring.
    17. Paul Ekins, 2012. "Sustainable growth revisited: technology, economics and policy," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 24(2), pages 59-77, June.
    18. Narita, Daiju, 2009. "Economic optimality of CCS use: a resource-economic model," Kiel Working Papers 1508, Kiel Institute for the World Economy (IfW Kiel).
    19. Elofsson, Katarina & Gren, Ing-Marie, 2014. "Cost-efficient climate policies for interdependent and uncertain carbon pools," Working Paper Series 2014:7, Swedish University of Agricultural Sciences, Department Economics.
    20. Narita, Daiju, 2008. "The use of CCS in global carbon management: simulation with the DICE model," Kiel Working Papers 1440, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Keywords

    Coal fired power plants; carbon capture and storage (CCS); cash flow analysis; life cycle analysis;
    All these keywords.

    JEL classification:

    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q59 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:1527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.