IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1014.html
   My bibliography  Save this paper

Supplying Synthetic Crude Oil from Canadian Oil Sands: A Comparative Study of the Costs and CO2 Emissions of Mining and In-Situ Recovery

Author

Listed:
  • Méjean, A.
  • Hope, C.

Abstract

High crude oil prices and the eventual decline of conventional oil production raise the issue of alternative fuels such as non-conventional oil. The paper describes a simple probabilistic model of the costs of synthetic crude oil (SCO) produced from Canadian oil sands. Synthetic crude oil is obtained by upgrading bitumen that is first produced through mining or in-situ recovery techniques. This forward-looking analysis quantifies the effects of learning and production constraints on the costs of supplying synthetic crude oil from Canadian bitumen deposits. The results show the uncertainties associated with the future costs of synthetic crude oil. Carbon costs have a large impact of the total costs of synthetic crude oil, in particular in the case of synthetic crude oil from in-situ bitumen, due to the carbon-intensity of the recovery techniques. The influence of each parameter on the supply costs is examined. In the case of mined SCO, the maximum production rate, the ultimate recovery rate and the depletion parameters show the largest influence on the results, while learning parameters dominate in the case of in-situ SCO.

Suggested Citation

  • Méjean, A. & Hope, C., 2010. "Supplying Synthetic Crude Oil from Canadian Oil Sands: A Comparative Study of the Costs and CO2 Emissions of Mining and In-Situ Recovery," Cambridge Working Papers in Economics 1014, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1014
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1014.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Greene, David L. & Hopson, Janet L. & Li, Jia, 2006. "Have we run out of oil yet? Oil peaking analysis from an optimist's perspective," Energy Policy, Elsevier, vol. 34(5), pages 515-531, March.
    2. Rath-Nagel, St. & Voss, A., 1981. "Energy models for planning and policy assessment," European Journal of Operational Research, Elsevier, vol. 8(2), pages 99-114, October.
    3. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    4. Toman, Michael & Krautkraemer, Jeffrey, 2003. "Fundamental Economics of Depletable Energy Supply," RFF Working Paper Series dp-03-01, Resources for the Future.
    5. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    6. Grubb, Michael, 2001. "Who's afraid of atmospheric stabilisation? Making the link between energy resources and climate change," Energy Policy, Elsevier, vol. 29(11), pages 837-845, September.
    7. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, September.
    8. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    9. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    10. Junius, Karsten, 1997. "Economies of scale: A survey of the empirical literature," Kiel Working Papers 813, Kiel Institute for the World Economy (IfW Kiel).
    11. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    12. Mohr, S.H. & Evans, G.M., 2010. "Long term prediction of unconventional oil production," Energy Policy, Elsevier, vol. 38(1), pages 265-276, January.
    13. Roumasset, J. & Isaak, D. & Fesharaki, F., 1983. "Oil prices without OPEC : A walk on the supply-side," Energy Economics, Elsevier, vol. 5(3), pages 164-170, July.
    14. Chakravorty, Ujjayant & Roumasset, James, 1990. "Competitive oil prices and scarcity rents when the extraction cost function is convex," Resources and Energy, Elsevier, vol. 12(4), pages 311-320, December.
    15. Soderbergh, Bengt & Robelius, Fredrik & Aleklett, Kjell, 2007. "A crash programme scenario for the Canadian oil sands industry," Energy Policy, Elsevier, vol. 35(3), pages 1931-1947, March.
    16. Bloemhof-Ruwaard, Jacqueline M. & van Beek, Paul & Hordijk, Leen & Van Wassenhove, Luk N., 1995. "Interactions between operational research and environmental management," European Journal of Operational Research, Elsevier, vol. 85(2), pages 229-243, September.
    17. Hope, Chris W., 2011. "The social cost of CO2 from the PAGE09 model," Economics Discussion Papers 2011-39, Kiel Institute for the World Economy (IfW Kiel).
    18. Marvin B. Lieberman, 1984. "The Learning Curve and Pricing in the Chemical Processing Industries," RAND Journal of Economics, The RAND Corporation, vol. 15(2), pages 213-228, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omidkar, Ali & Haddadian, Kamran & Es'haghian, Razieh & Alagumalai, Avinash & Li, Zhaofei & Song, Hua, 2024. "Novel energy efficient in-situ bitumen upgrading technology to facilitate pipeline transportation using natural gas: Sustainability evaluation using a new hybrid approach based on fuzzy multi-criteria," Energy, Elsevier, vol. 297(C).
    2. Aurélie Méjean & Chris Hope, 2010. "The Effect of CO2 Pricing on Conventional and Non-Conventional Oil Supply and Demand," Working Papers EPRG 1029, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Chi Yong & Mu Tong & Zhongyi Yang & Jixian Zhou, 2023. "Conventional Natural Gas Project Investment and Decision Making under Multiple Uncertainties," Energies, MDPI, vol. 16(5), pages 1-30, February.
    4. Rui Xing & Diego V. Chiappori & Evan J. Arbuckle & Matthew T. Binsted & Evan G. R. Davies, 2021. "Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO 2 Emissions, and Supply Costs," Energies, MDPI, vol. 14(19), pages 1-14, October.
    5. Hosseini, Seyed Hossein & Shakouri G., Hamed, 2016. "A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach," Energy Policy, Elsevier, vol. 91(C), pages 64-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    2. Aurélie Méjean & Chris Hope, 2010. "The Effect of CO2 Pricing on Conventional and Non-Conventional Oil Supply and Demand," Working Papers EPRG 1029, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    4. Méjean, Aurélie & Hope, Chris, 2010. "Modelling the costs of energy crops: A case study of US corn and Brazilian sugar cane," Energy Policy, Elsevier, vol. 38(1), pages 547-561, January.
    5. Hosseini, Seyed Hossein & Shakouri G., Hamed, 2016. "A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach," Energy Policy, Elsevier, vol. 91(C), pages 64-74.
    6. Chang, Yusang & Lee, Jinsoo & Yoon, Hyerim, 2012. "Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook," Energy Policy, Elsevier, vol. 50(C), pages 154-160.
    7. Heun, Matthew Kuperus & de Wit, Martin, 2012. "Energy return on (energy) invested (EROI), oil prices, and energy transitions," Energy Policy, Elsevier, vol. 40(C), pages 147-158.
    8. Rout, Ullash K. & Fahl, Ulrich & Remme, Uwe & Blesl, Markus & Voß, Alfred, 2009. "Endogenous implementation of technology gap in energy optimization models--a systematic analysis within TIMES G5 model," Energy Policy, Elsevier, vol. 37(7), pages 2814-2830, July.
    9. Narbel, Patrick André & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 91-97.
    10. Cameron Hepburn & Alex Bowen, 2013. "Prosperity with growth: economic growth, climate change and environmental limits," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 29, pages 617-638, Edward Elgar Publishing.
    11. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    12. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    13. Handayani, Kamia & Krozer, Yoram & Filatova, Tatiana, 2019. "From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning," Energy Policy, Elsevier, vol. 127(C), pages 134-146.
    14. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    15. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
    16. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
    17. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    18. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
    20. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2021. "(Bio-)Fuel mandating and the green paradox," Energy Economics, Elsevier, vol. 95(C).

    More about this item

    Keywords

    Non-conventional oil; Uncertainty; Social cost of carbon;
    All these keywords.

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.