IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v35y2014i1_supplp137-164.html
   My bibliography  Save this article

A Clean Energy Standard Analysis with the US-REGEN Model

Author

Listed:
  • Geoffrey J. Blanford
  • James H. Merrick
  • David Young

Abstract

A clean energy standard (CES) is a potential policy alternative to reduce carbon emissions in the electric sector. We analyze this policy under a range of technological assumptions, expanding on the Energy Modeling Forum (EMF) 24 study scenarios, using a new modeling tool, US-REGEN. We describe three innovative features of the model: treatment of spatial and temporal variability of renewable resources, cost-of-service electric sector pricing, and explicit representation of energy end-use specific capital. We find that varying technology assumptions results in vastly different futures, with large contrasts in the distribution and scale of inter-regional financial flows, and in the generation mix. We explore regional differences in how the costs of CES credits are passed through with cost-of-service vs. competitive pricing. Finally, we compare the CES to an economy-wide emissions cap. We find that although the two policies result in a similar generation mix, price and electricity end-use results differ.

Suggested Citation

  • Geoffrey J. Blanford & James H. Merrick & David Young, 2014. "A Clean Energy Standard Analysis with the US-REGEN Model," The Energy Journal, , vol. 35(1_suppl), pages 137-164, June.
  • Handle: RePEc:sae:enejou:v:35:y:2014:i:1_suppl:p:137-164
    DOI: 10.5547/01956574.35.SI1.8
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.35.SI1.8
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.35.SI1.8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John A. Skip Laitner and Donald A. Hanson, 2006. "Modeling Detailed Energy-Efficiency Technologies and Technology Policies within a CGE Framework," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 151-170.
    2. Azusa OKAGAWA & Kanemi BAN, 2008. "Estimation of substitution elasticities for CGE models," Discussion Papers in Economics and Business 08-16, Osaka University, Graduate School of Economics.
    3. Kira R. Fabrizio & Nancy L. Rose & Catherine D. Wolfram, 2007. "Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on US Electric Generation Efficiency," American Economic Review, American Economic Association, vol. 97(4), pages 1250-1277, September.
    4. Aldy, Joseph Edgar, 2011. "Promoting Clean Energy in the American Power Sector," Scholarly Articles 4901643, Harvard Kennedy School of Government.
    5. Vajjhala, Shalini P. & Fischbeck, Paul S., 2007. "Quantifying siting difficulty: A case study of US transmission line siting," Energy Policy, Elsevier, vol. 35(1), pages 650-671, January.
    6. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    7. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    8. Bryan K. Mignone & Thomas Alfstad & Aaron Bergman & Kenneth Dubin & Richard Duke & Paul Friley & Andrew Martinez & Matthew Mowers & Karen Palmer & Anthony Paul & Sharon Showalter & Daniel Steinberg & , 2012. "Cost-effectiveness and Economic Incidence of a Clean Energy Standard," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 3).
    9. Coffman, Makena & Griffin, James P. & Bernstein, Paul, 2012. "An assessment of greenhouse gas emissions-weighted clean energy standards," Energy Policy, Elsevier, vol. 45(C), pages 122-132.
    10. Beckman, Jayson & Hertel, Thomas & Tyner, Wallace, 2011. "Validating energy-oriented CGE models," Energy Economics, Elsevier, vol. 33(5), pages 799-806, September.
    11. Michel, Steven & Nielsen, John, 2008. "Popping the CO2RC: An Alternative Load-Based CO2 Cap-and-Trade Instrument for the Electricity Sector," The Electricity Journal, Elsevier, vol. 21(4), pages 31-42, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cullen, Joseph A. & Reynolds, Stanley S., 2023. "Market dynamics and investment in the electricity sector," International Journal of Industrial Organization, Elsevier, vol. 89(C).
    2. Frew, Bethany A. & Jacobson, Mark Z., 2016. "Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model," Energy, Elsevier, vol. 117(P1), pages 198-213.
    3. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    4. John E. Bistline & Francisco Chesnaye, 2017. "Banking on banking: does “when” flexibility mask the costs of stringent climate policy?," Climatic Change, Springer, vol. 144(4), pages 597-610, October.
    5. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
    6. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    7. Zachary A. Wendling & David C. Warren & Barry M. Rubin & Sanya Carley & Kenneth R. Richards, 2020. "A Scalable Energy–Economy Model for State-Level Policy Analysis Applied to a Demand-Side Management Program," Economic Development Quarterly, , vol. 34(4), pages 372-386, November.
    8. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    9. Kittel, Martin & Hobbie, Hannes & Dierstein, Constantin, 2022. "Temporal aggregation of time series to identify typical hourly electricity system states: A systematic assessment of relevant cluster algorithms," Energy, Elsevier, vol. 247(C).
    10. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
    11. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Reprint of Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 184(C), pages 1529-1550.
    12. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Timo Lohmann & Steffen Rebennack, 2017. "Tailored Benders Decomposition for a Long-Term Power Expansion Model with Short-Term Demand Response," Management Science, INFORMS, vol. 63(6), pages 2027-2048, June.
    14. Schwanitz, Valeria Jana & Wierling, August, 2016. "Offshore wind investments – Realism about cost developments is necessary," Energy, Elsevier, vol. 106(C), pages 170-181.
    15. Cullenward, Danny & T. Wilkerson, Jordan & Wara, Michael & Weyant, John P., 2016. "Dynamically estimating the distributional impacts of U.S. climate policy with NEMS: A case study of the Climate Protection Act of 2013," Energy Economics, Elsevier, vol. 55(C), pages 303-318.
    16. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bielen, David A., 2018. "Do differentiated performance standards help coal? CO2 policy in the U.S. electricity sector," Resource and Energy Economics, Elsevier, vol. 53(C), pages 79-100.
    2. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    3. Khabbazan, Mohammad M. & von Hirschhausen, Christian, 2021. "The implication of the Paris targets for the Middle East through different cooperation options," Energy Economics, Elsevier, vol. 104(C).
    4. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    5. Antimiani, Alessandro & Costantini, Valeria & Martini, Chiara & Salvatici, Luca & Tommasino, Maria Cristina, 2011. "Cooperative and non-cooperative solutions to carbon leakage," Conference papers 332096, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Luo, Xiaohu & Caron, Justin & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "Interprovincial migration and the stringency of energy policy in China," Energy Economics, Elsevier, vol. 58(C), pages 164-173.
    7. Tapia-Ahumada, Karen & Octaviano, Claudia & Rausch, Sebastian & Pérez-Arriaga, Ignacio, 2015. "Modeling intermittent renewable electricity technologies in general equilibrium models," Economic Modelling, Elsevier, vol. 51(C), pages 242-262.
    8. Rausch, Sebastian & Zhang, Da, 2018. "Capturing natural resource heterogeneity in top-down energy-economic equilibrium models," Energy Economics, Elsevier, vol. 74(C), pages 917-926.
    9. Enrica De Cian & Ramiro Parrado, 2012. "Technology Spillovers Embodied in International Trade: Intertemporal, regional and sectoral effects in a global CGE," Working Papers 2012.27, Fondazione Eni Enrico Mattei.
    10. Khabbazan, Mohammad M. & von Hirschhausen, Christian, 2021. "The implication of the Paris targets for the Middle East through different cooperation options," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 104.
    11. Yuan, Mei & Tapia-Ahumada, Karen & Reilly, John, 2021. "The role of cross-border electricity trade in transition to a low-carbon economy in the Northeastern U.S," Energy Policy, Elsevier, vol. 154(C).
    12. Paul, Anthony & Palmer, Karen & Woerman, Matt, 2013. "Modeling a clean energy standard for electricity: Policy design implications for emissions, supply, prices, and regions," Energy Economics, Elsevier, vol. 36(C), pages 108-124.
    13. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    14. Sophie Maire & Philippe Thalmann & Frank Vöhringer, 2019. "Welfare effects of technology-based climate policies in liberalized electricity markets: seeing beyond total system cost," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    15. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    16. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    17. Jared C. Carbone & Linda T.M. Bui & Don Fullerton & Sergey Paltsev & Ian Sue Wing, 2022. "When and How to Use Economy-Wide Models for Environmental Policy Analysis," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 447-465, October.
    18. Abrell, Jan & Rausch, Sebastian, 2016. "Cross-country electricity trade, renewable energy and European transmission infrastructure policy," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 87-113.
    19. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    20. Paul, Anthony & Palmer, Karen & Woerman, Matt, 2014. "Analysis of the Bingaman clean energy standard proposal," Resource and Energy Economics, Elsevier, vol. 36(1), pages 113-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:35:y:2014:i:1_suppl:p:137-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.