IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v144y2017i4d10.1007_s10584-017-2053-6.html
   My bibliography  Save this article

Banking on banking: does “when” flexibility mask the costs of stringent climate policy?

Author

Listed:
  • John E. Bistline

    (Electric Power Research Institute)

  • Francisco Chesnaye

    (Electric Power Research Institute)

Abstract

Banking and borrowing emission allowances provide temporal flexibility in cap-and-trade systems, which can enhance the economic efficiency of environmental policy while adhering to the same cumulative emission budget. This paper investigates the role of temporal (“when”) flexibility from emission banking provisions under an economy-wide cap-and-trade policy in the USA. The current literature on meeting deep decarbonization targets almost exclusively assumes unlimited banking, which may bias policy recommendations and have important consequences for R&D prioritization and model development. Numerical experiments using the energy-economic model US Regional Energy, GHG, and Economy (US-REGEN) indicate that assumptions about banking materially impact cost and emission pathways in meeting long-term targets like 80% reductions by 2050 relative to 2005 levels. Given the stringency of long-run targets and convexity of marginal abatement costs, the cost-minimizing time path for mitigation with banking suggests that 2025 abatement should exceed the pledged level under the Paris Agreement (42% instead of 26–28%) to reduce future costs. Total policy costs are approximately 30% higher when banking is excluded; however, political economy barriers and uncertainty may limit the use of banking provisions despite their appeal on economic efficiency grounds. Banking on policy implementation with unlimited temporal flexibility may distort insights about the pace, extent, and economic impacts of future energy transitions associated with long-term abatement targets, especially for more stringent climate policies.

Suggested Citation

  • John E. Bistline & Francisco Chesnaye, 2017. "Banking on banking: does “when” flexibility mask the costs of stringent climate policy?," Climatic Change, Springer, vol. 144(4), pages 597-610, October.
  • Handle: RePEc:spr:climat:v:144:y:2017:i:4:d:10.1007_s10584-017-2053-6
    DOI: 10.1007/s10584-017-2053-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2053-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2053-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    2. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
    3. Valentina Bosetti & David G. Victor, 2011. "Politics and Economics of Second-Best Regulation of Greenhouse Gases: The Importance of Regulatory Credibility," The Energy Journal, , vol. 32(1), pages 1-24, January.
    4. Brian C. Murray & Richard G. Newell & William A. Pizer, 2009. "Balancing Cost and Emissions Certainty: An Allowance Reserve for Cap-and-Trade," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 3(1), pages 84-103, Winter.
    5. Leon E. Clarke, Allen A. Fawcett, John P. Weyant, James McFarland, Vaibhav Chaturvedi, and Yuyu Zhou, 2014. "Technology and U.S. Emissions Reductions Goals: Results of the EMF 24 Modeling Exercise," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    6. Kling, Catherine & Rubin, Jonathan, 1997. "Bankable permits for the control of environmental pollution," Journal of Public Economics, Elsevier, vol. 64(1), pages 101-115, April.
    7. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    8. Makoto Hasegawa & Stephen Salant, 2015. "The Dynamics of Pollution Permits," Annual Review of Resource Economics, Annual Reviews, vol. 7(1), pages 61-79, October.
    9. Volker Krey & Gunnar Luderer & Leon Clarke & Elmar Kriegler, 2014. "Getting from here to there – energy technology transformation pathways in the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 369-382, April.
    10. Bistline, John E., 2015. "Electric sector capacity planning under uncertainty: Climate policy and natural gas in the US," Energy Economics, Elsevier, vol. 51(C), pages 236-251.
    11. Geoffrey J. Blanford, James H. Merrick, and David Young, 2014. "A Clean Energy Standard Analysis with the US-REGEN Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bistline, John E.T. & Brown, Maxwell & Siddiqui, Sauleh A. & Vaillancourt, Kathleen, 2020. "Electric sector impacts of renewable policy coordination: A multi-model study of the North American energy system," Energy Policy, Elsevier, vol. 145(C).
    2. Bistline, John E.T. & Blanford, Geoffrey J., 2020. "Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals," Energy Economics, Elsevier, vol. 86(C).
    3. Bistline, John E.T. & Young, David T., 2020. "Emissions impacts of future battery storage deployment on regional power systems," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bistline, John E., 2016. "Energy technology R&D portfolio management: Modeling uncertain returns and market diffusion," Applied Energy, Elsevier, vol. 183(C), pages 1181-1196.
    2. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    3. Quemin, Simon & Trotignon, Raphaël, 2021. "Emissions trading with rolling horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    4. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    5. Stranlund, John K. & Murphy, James J. & Spraggon, John M., 2014. "Price controls and banking in emissions trading: An experimental evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 71-86.
    6. Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
    7. Fell, Harrison & MacKenzie, Ian A. & Pizer, William A., 2012. "Prices versus quantities versus bankable quantities," Resource and Energy Economics, Elsevier, vol. 34(4), pages 607-623.
    8. Burtraw, Dallas & Holt, Charles & Palmer, Karen & Paul, Anthony & Shobe, William, 2018. "Quantities with Prices," RFF Working Paper Series 18-08, Resources for the Future.
    9. Bistline, John E. & Comello, Stephen D. & Sahoo, Anshuman, 2018. "Managerial flexibility in levelized cost measures: A framework for incorporating uncertainty in energy investment decisions," Energy, Elsevier, vol. 151(C), pages 211-225.
    10. Simon Quemin & Raphael Trotignon, 2018. "Competitive Permit Storage and Market Design: An Application to the EU-ETS," Working Papers 2018.19, FAERE - French Association of Environmental and Resource Economists.
    11. Makoto Hasegawa & Stephen Salant, 2015. "The Dynamics of Pollution Permits," Annual Review of Resource Economics, Annual Reviews, vol. 7(1), pages 61-79, October.
    12. Mowers, Matthew & Mignone, Bryan K. & Steinberg, Daniel C., 2023. "Quantifying value and representing competitiveness of electricity system technologies in economic models," Applied Energy, Elsevier, vol. 329(C).
    13. Koch, Nicolas & Grosjean, Godefroy & Fuss, Sabine & Edenhofer, Ottmar, 2016. "Politics matters: Regulatory events as catalysts for price formation under cap-and-trade," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 121-139.
    14. Maryse Labriet & Laurent Drouet & Marc Vielle & Richard Loulou & Amit Kanudia & Alain Haurie, 2015. "Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models," Working Papers 2015.23, Fondazione Eni Enrico Mattei.
    15. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
    16. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    17. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Endo, Seiya & Fujii, Yasumasa & Komiyama, Ryoichi & Kato, Etsushi & Kurosawa, Atsushi & Matsuo, Yuhji & Oshiro, Ken & Sano, Fuminori & Shira, 2019. "Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges," Energy, Elsevier, vol. 167(C), pages 1120-1131.
    18. Karydas, Christos & Zhang, Lin, 2019. "Green tax reform, endogenous innovation and the growth dividend," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 158-181.
    19. Harrison Fell & Richard Morgenstern, 2010. "Alternative Approaches to Cost Containment in a Cap-and-Trade System," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 275-297, October.
    20. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:144:y:2017:i:4:d:10.1007_s10584-017-2053-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.